Demystify the Degree-related Bias in Recommender System

Yu Wang

Yuying Zhao

Yi Zhang

Tyler Derr

Network and Data Science Lab Vanderbilt University

Background – Message-passing in graph-based method for recommendation

- \bigcirc User node \mathcal{N}_u Neighborhood set of $u \longrightarrow$ Message passing
- \bigcirc Item node i^- Negative sample of u

(a) User-item interacted bipartite graph

(c) Inference stage

 j_1 is more connected to u's neighborhood than j_4

Method – Common Interacted Ratio (CIR)

$$\phi_u^L(j) = \frac{1}{|\mathcal{N}_u^1|} \sum_{i \in \mathcal{N}_u^1} \sum_{l=1}^L \beta^{2l} \sum_{\substack{P_{ji}^{2l} \in \mathcal{P}_{ji}^{2l}}} \frac{1}{f(\{\mathcal{N}_k^1 | k \in P_{ji}^{2l}\})}, \quad \forall j \in \mathcal{N}_u^1, \forall u \in \mathcal{U}_{ji}^1$$

Leveraging collaborations from *u*'s neighboring node *j* with higher CIR would cause more benefits to *u*'s ranking

Model – Collaboration-aware GNN (CAGCN)

$$\Phi_{ij} = \begin{cases} \phi_i(j), & \text{if } \mathbf{A}_{ij} > 0 \\ 0, & \text{if } \mathbf{A}_{ij} = 0 \end{cases}, \forall i, j \in \mathcal{V}$$

$$\mathbf{e}_{i}^{l+1} = \sum_{j \in \mathcal{N}_{i}^{1}} g(\gamma_{i} \frac{\Phi_{ij}}{\sum_{k \in \mathcal{N}_{i}^{1}} \Phi_{ik}}, d_{i}^{-0.5} d_{j}^{-0.5}) \mathbf{e}_{j}^{l}, \forall i \in \mathcal{V}$$

Table 4: Efficiency comparison of CAGCN* with LightGCN.

Model	Stage	Gowalla	Yelp	Amazon	Ml-1M	Loseit	News
LightGCN	Training	16432.0	28788.0	81976.5	18872.3	39031.0	13860.8
CAGCN*	Preprocess	167.4	281.6	1035.8	33.8	31.4	169.0
	Training	2963.2	1904.4	1983.9	11304.7	10417.7	1088.4
	Total	3130.6	2186.0	3019.7	11338.5	10449.1	1157.4
Improve	Training	82.0%	93.4%	97.6%	40.1%	73.3%	92.1%
	Total	80.9%	92.4%	96.3%	39.9%	73.2%	91.6%

Analysis – Performance differs per degree and metric

(1) CAGCN performs better on low-degree users while worse on high-degree users, which also aligns with CIR

(2) Different trend when using NDCG and Recall

Which one really performs well? High-degree or low-degree nodes?

Analysis – Bias of different evaluation metrics

$$\mathbb{R}@K_i = \frac{|\hat{\mathcal{N}}_i^1 \cap \widetilde{\mathcal{N}}_i^1|}{|\hat{\mathcal{N}}_i^1|} \longrightarrow E(\mathbb{R}@\mathbb{K}|d) = \frac{K}{n}, \quad \frac{\partial E(\mathbb{R}@\mathbb{K}|d)}{\partial d} = 0,$$

$$\mathbf{P}@K_i = \frac{|\hat{\mathcal{N}}_i^1 \cap \widetilde{\mathcal{N}}_i^1|}{K} \qquad \qquad \mathbf{E}(\mathbf{P}@\mathbf{K}|d) = \frac{d}{n}, \quad \frac{\partial E(\mathbf{P}@\mathbf{K}|d)}{\partial d} = 1,$$

$$F1@K_i = 2\frac{P@K \cdot R@K}{R@K + P@K} = \frac{2|\hat{\mathcal{N}}_i^1 \cap \tilde{\mathcal{N}}_i^1|}{K + |\hat{\mathcal{N}}_i^1|} \longrightarrow E(F1@K|d) = \frac{2K}{n} \frac{d}{K + d}, \quad \frac{\partial E(F1@K|d)}{\partial d} = \frac{2K^2}{n} \frac{1}{(K + d)^2}$$

$$\mathbf{N}@K_i = \frac{\sum_{k=1}^K \frac{\mathbb{I}[v_{\phi_i^k} \in (\mathcal{N}_i^1 \cap \mathcal{N}_i^1)]}{\log_2(k+1)}}{\sum_{k=1}^K \frac{1}{\log_2(k+1)}} \qquad \Longrightarrow \qquad E(\mathbf{N}@\mathbf{K}|d) = \frac{d}{n}, \quad \frac{\partial E(\mathbf{N}@\mathbf{K}|d)}{\partial d} = 1.$$

 $\widehat{\mathcal{N}}_i^1 \cap \widehat{\mathcal{N}}_i^1$ follows hyper-geometric distribution if $\widehat{\mathcal{N}}_i^1$ is given by an unbiased recommender system

Analysis – Bias of different evaluation metrics

$$E(\mathbf{R}@\mathbf{K}|d) = \frac{K}{n}, \quad \frac{\partial E(\mathbf{R}@\mathbf{K}|d)}{\partial d} = 0,$$

$$E(\mathbf{P@K}|d) = \frac{d}{n}, \quad \frac{\partial E(\mathbf{P@K}|d)}{\partial d} = 1,$$

$$E(\text{F1@K}|d) = \frac{2K}{n} \frac{d}{K+d}, \ \frac{\partial E(\text{F1@K}|d)}{\partial d} = \frac{2K^2}{n} \frac{1}{(K+d)^2}$$

$$E(N@K|d) = \frac{d}{n}, \quad \frac{\partial E(N@K|d)}{\partial d} = 1.$$

Conclusion

CIR-based GNNs

Recall is an unbiased estimator

