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Critical infrastructure networks are becoming increasingly interdependent which adversely impacts their perfor-
mance through the cascading effect of initial failures. Failing to account for these complex interactions could lead to
an underestimation of the vulnerability of interdependent critical infrastructure (ICI). The goal of this research is to
assess how important interdependent links are by evaluating the interdependency strength using a dynamic network
flow redistribution model which accounts for the dynamic and uncertain aspects of interdependencies. Specifically,
a vulnerability analysis is performed considering two scenarios, one with interdependent links and the other without
interdependent links. The initial failure is set to be the same under both scenarios. Cascading failure is modeled
through a flow redistribution until the entire system reaches a stable state in which cascading failure no longer
occurs. The unmet demand of the networks at the stable state over the initial demand is defined as the vulnerability.
The difference between the vulnerability of each network under these two scenarios is used as the metric to quantify
interdependency strength. A case study of a real power-water-gas system subject to earthquake risk is conducted
to illustrate the proposed method. Uncertainty is incorporated by considering failure probability using Monte Carlo
simulation. By varying the location and magnitude of earthquake disruptions, we show that interdependency strength
is determined not only by the topology and flow of ICIs but also the characteristics of the disruptions. This compound
system-disruption effect on interdependency strength can inform the design, assessment, and restoration of ICIs.

Keywords: Interdependency Strength, Vulnerability Analysis, Flow Redistribution, Cascading Failures, Network-
Disruption Effect.

1. Introduction
The economic development of a country and
the well-being of its citizens rely heavily on
the proper operation of infrastructure networks
such as transportation systems and power grids.
When extreme events adversely impact these in-
frastructure networks, commercial activities and
daily life of nearby residents are severely hin-
dered (Ouyang, 2016). For example, the 2003
North American Blackout, which lasted up to 4
days, cost the US around $5 billion according
to the U.S. Department of Energy (Amin, 2003).
The 2008 Wenchuan Earthquake that hit Sichuan
Province of China caused massive disruptions in
critical infrastructure systems, such as the water
supply and transportation systems, leading to a
significant lack of resources for the victims and

severely hampering rescue activities (Zhang et al.,
2018).

Critical infrastructure networks do not oper-
ate in silos and are instead highly interconnected
through interdependent links, (Rinaldi et al., 2001;
Ouyang et al., 2009; Ouyang, 2016). Examples
of such interdependent links are present in water-
electricity systems where pumping stations re-
quire power from 12-kV substations to lift water
from the nearby river and power generation plants
rely on water from storage tanks for cooling.
While these interdependent links help infrastruc-
ture systems become more efficient during normal
business operations, they may contribute to their
vulnerability during a disruption. A disruption
within one network may cause cascading failures
across multiple networks, rendering substantial
economic loss and adverse effects across commu-
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nities and economic sectors. For instance, the
2001 World Trade Center attack impacted vari-
ous types of interdependent infrastructure systems
(Mendonça et al., 2004). The concept of infras-
tructure interdependency was first raised in (Ri-
naldi et al., 2001) and several scholars proposed
different classifications of interdependency (Ri-
naldi et al., 2001; Zimmerman, 2001; Zhang and
Peeta, 2011). This paper adopts the classification
of Rinaldi et al. (2001) and focuses on the phys-
ical interdependency, which arises between two
networks when one is dependent on the material
output of another.

The focus of this research is to assess the im-
portance of the interdependent links, i.e., interde-
pendency strength, and their impact on the net-
works’ vulnerability and ability to recover during
disruptions. A graph-based method is employed
(Ouyang, 2016) to incorporate topological and
geographical information. Infrastructure systems
are modeled as graphs where nodes represent fa-
cilities and links represent pipelines and grids.
The interdependencies are modeled as inter-links
connecting nodes from different networks, which
characterize system topological feature and flow
variation. Failure modes and performance metrics
need to be specified to assess system performance.
The initial failure can be (i) random, (ii) inten-
tional, or (iii) due to a natural hazards represented
by the probability of exceeding a certain damage
state threshold (Ouyang, 2016). To include uncer-
tainty in the analysis, natural hazards are chosen
to be the initial failure here.

Interdependency strength, which is defined as
the effect of the interdependency on system per-
formance, quantifies how much the system perfor-
mance changes after considering interdependent
links across networks in the model (Ouyang et al.,
2009). While research advances in network mod-
eling have addressed the performance of interde-
pendent systems, the strength of the interdepen-
dent links is yet to be studied. Topological-based
models consider interdependency strength as the
conditional failure probability of the dependent
components and assume without any prior knowl-
edge that the value of the conditional probability
is known (Lehmann and Bernasconi, 2010; Zhang
et al., 2016; Yodo and Wang, 2016; Hosseini and
Barker, 2016). Flow-based models build interde-
pendency relationships directly using flow conser-
vation without quantifying their strengths (Holden
et al., 2013; Mooney et al., 2018; Almoghathawi
and Barker, 2019; Goldbeck et al., 2019). This pa-
per develops a dynamic flow redistribution model
to fully characterize the interdependency strength
and evaluate its effect on infrastructure perfor-
mance.

The remainder of the paper is organized as
follows, Section 2 introduces the methodologi-
cal framework to comprehensively analyze the
vulnerability of interdependent infrastructure sys-

tems and provides an approach to quantify inter-
dependency strength, Section 3 presents a case
study of power-water-gas interdependent systems,
and concluding remarks are provided in Section 4.

2. Methodology
In this section, a framework to analyze interde-
pendency strength across ICISs is proposed. In-
terdependency strength is quantified by measuring
the difference between the vulnerability of infras-
tructure systems under two scenarios, one with
interdependent links and the other without inter-
dependent links (Ouyang et al., 2009). System
vulnerability under these two scenarios is consid-
ered based on performance deterioration through
failure simulation and flow redistribution. The
framework is presented in the diagram in Fig. 1.
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Fig. 1.: Framework for quantifying interdepen-
dency strength of infrastructure systems.

First, topology extraction and flow estimation
for each infrastructure network are introduced.
Then the failure simulation is performed and
based on the results, system vulnerability and in-
terdependency strength are calculated.

2.1. System Structure Extraction
A network which is composed of nodes and
links, is usually modeled as a graph where
nodes correspond to vertices and links correspond
to edges (Dueñas-Osorio et al., 2004; Dueñas-
Osorio, 2005; Dueñas-Osorio et al., 2007). In
the case of infrastructure networks, nodes repre-
sent stations or facilities such as power plants,
storage towers or gas substations, which generate
or distribute resources. Links represent pipelines
or grids which transport or deliver resources to
end-users. Infrastructure systems do not operate
individually and rely on resources from different
types of networks which makes them interdepen-
dent. The approach for modeling infrastructure
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networks and their interdependencies are intro-
duced in the following subsection.

2.1.1. Network Topology

In this paper, an interdependent gas-power-water
system is considered. For the gas network, natural
gas is extracted from underground at gas pump-
ing stations, transported through gas pipelines to
intermediate stations and then delivered to end-
users. For the power network, electricity is first
generated by burning gas at power plants and then
transported through 23-kV, 12-kV substations to
communities. For the water network, water is
lifted from the nearby river at pumping stations
and stored in storage tanks for future use (Yu and
Baroud, 2019; Zhang et al., 2016).

Without loss of generality, this paper consid-
ers two types of nodes, (i) generation (source)
nodes which generate resources or energy, and
(ii) load (demand) nodes which provide residents
with daily necessities (Johansen and Tien, 2018;
Almoghathawi et al., 2019). Water pumping sta-
tions, gas extraction stations, and power plants
serve as generation nodes while water storage
tanks, gas and power substations serve as load
nodes. Water and gas pipelines as well as power
grids serve as links to transfer resources and en-
ergy. In the case of real infrastructure networks,
node location and adjacent relationships can be
obtained directly from maps or historical data.
However, information on capacity of nodes and
flows along links is often challenging to obtain
due to security reasons or lack of technology to
collect such data. Therefore, simulated networks
are often used where graph algorithms are em-
ployed to generate networks based on topologi-
cal information of real systems (Mukherjee and
Manna, 2006; Xu et al., 2007; Zhang et al., 2016).
The simplified model for the system of interde-
pendent infrastructure networks considered in this
paper is shown in Fig. 2.

2.2. Flow Estimation and Redistribution
Resources and energy move between nodes within
and across networks in the form of flow. To
quantify the interdependency strength based on
the difference of system vulnerability with con-
sideration of cascading failure, the initial flow
and its redistribution process are modeled. The
initial flow is calculated by solving a linear pro-
gramming problem and a redistribution process
assigns subsequent flows based on the disruption
and corresponding failures. When a node fails, the
load that it was carrying right before the failure
is redistributed to its adjacent nodes equally or
proportionally (Lehmann and Bernasconi, 2010;
Zhang and Yağan, 2019). Since this paper mainly
focuses on quantifying interdependency strength,
the two procedures of initial and subsequent flow
distribution are not presented in details.

Water NetworkGas Network

Power Network

Shaded Circles: Load Nodes

Natural Gas Resource

Solid Arrows: Links within Networks

Dash Arrows: Interdependent Links

Nearby River or Lake

Shaded Squares: Generation Nodes

Fig. 2.: An interdependent gas-power-water sys-
tem.

2.3. Failure Simulation
To analyze the performance deterioration, i.e. the
vulnerability of the system, the failure scenario
needs to be specified first. Prior work on simu-
lation of initial failure is based on (i) random or
local attacks (Dueñas-Osorio et al., 2007; Ouyang,
2016), or (ii) Monte Carlo simulation of natural
hazards including earthquakes, floods, and thun-
derstorms (Yu and Baroud, 2019). Due to fail-
ure propagation within and across networks, the
effect of the initial failure becomes more signif-
icant due to cascading effects. When the entire
system reaches a stable state where cascading
failure no longer occurs, the system vulnerability
is calculated using the performance deterioration
and further used to quantify the interdependency
strength.

2.3.1. Generating the Initial Failure Scenario

The initial failure scenario is determined by the
disaster affecting the system. Different types of
disasters require different modeling techniques. In
this paper, we suppose that the system is impacted
by an earthquake. Median Peak Ground Acceler-
ation (PGA) is typically used to characterize the
seismic intensity, the logarithmic values of which
can be calculated based on the earthquake magni-
tudeMw and the distance from the epicenter to the
specific component according to Eq. (1) (Adachi
and Ellingwood, 2009). The failure probabil-
ity, i.e. the conditional probability of exceeding
the complete damage state given median values
of PGA, is defined by Eq. (2) (Department of
Homeland Security, 2013) where λ and ζ are
two parameters varying according to the types of
facilities, and φ is the standard normal cumulative
distribution function.

log(PGA) = 3.79 + 0.298× (Mw − 6)

− 0.0536× (Mw − 6)2

− log(R)− 0.00135×R
(1)

P (PGA) = φ

[
ln (PGA)− λ

ζ

]
(2)

If the random number generated by the Monte
Carlo simulation is less than the failure probabil-
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ity, the component is assumed to be inoperable.
To simplify the analysis, partial functionality and
restoration after disruptions are not considered.
Once the component is inoperable, its incident
links cannot transport resources properly due to
blockage or leakage at both ends of the links. The
failure of a link between vertex i and vertex j is
represented by setting its corresponding entry aij
to 0 in the adjacent matrixA, a square matrix used
to represent the structure of graphs. The detailed
procedure of the simulation is summarized in Al-
gorithm 1.

Algorithm 1: Simulating the initial failure sce-
nario
Input: Earthquake magnitude, coordinates of the

epicenter and network components, the ad-
jacent matrix A, the value of parameters of
fragility curves λ, ζ

1: for i = 1 to N do
2: Calculate the distance Ri(km) from the

component i to the earthquake epicenter
3: Calculate the failure probability pi of the

component i based on Eq. (1) and Eq. (2)
4: Run MCS: generating a random number

ui ∼ U(0, 1) for the component i
5: if pi < ui then
6: Component i is not damaged
7: else
8: Component i is damaged
9: Update the corresponding adjacent

matrix, A[i, :] = A[:, i] = 0
10: end if
11: end for

2.3.2. Cascading Failure

Initial failures in nodes and links trigger a redis-
tribution of flow within and across the networks.
According to (Lehmann and Bernasconi, 2010;
Zhang and Yağan, 2019), the process of flow
redistribution is simulated by assigning the load
from the failed node to its adjacent nodes equally
or proportionally. Here, we assume it is dis-
tributed proportionally. After flow redistribution,
the amount of resources flowing into certain nodes
may increase, which can exceed their original
capacity and prompt overload failure, while other
nodes may receive less flow, leading to higher
levels of unmet demand for their users. Cascading
failure occurs in both of these cases. For each
additional failure in a node or a link, flow is
redistributed and survival nodes are suffer from
either overload or lack of resources. The process
keeps alternating between flow updating and node
failure until failure nodes or links, indicating that
the system has reached a new disrupted stable
state.

2.3.3. Vulnerability Quantification

Vulnerability refers to the impact of the disruption
on system performance which corresponds to (i)
structural vulnerability and (ii) functional vulner-
ability. For structural vulnerability, the network
topology is the only information considered while
for functional vulnerability, both topology and
flow information are considered. In this paper,
functional vulnerability is used to measure the
performance deterioration of the system and it
is calculated as the average ratio of the unmet
demand of each load node to its initial demand
value. The initial demand value of each load node
is determined by Eq. (4) given the population
of the nearby areas served by that load node and
the corresponding resources required per capita.
The unmet demand is obtained by subtracting the
value of the current flow going into the node from
its initial demand. The equation to calculate the
vulnerability is given by:

δM (t) =
1

NM
l

NM
l∑

i=1

ϕMi (t)−
∑

j∈Et,M
i

f t,Mji

ϕMi (t)
(3)

ϕMi (t) = dir
M
i (t) (4)

In Eq. (3), NM
l is the number of load nodes

in the initial undamaged network M , ϕMi (t) is
the initial demand value of load node i, Et,Mi is
the edge set containing all edges incident to load
node i at time t, and f tji is the flow from node j
to node i at time t. The parameters above all refer
to the state of the corresponding network M . In
Eq. (4), di is the population served by load node
i and it can be assumed to be constant within a
very short period of time when cascading failure
happens. rMi (t) is the demand for the resource
corresponding to network M per capita. It should
be noted that rMi (t) is a time-dependent variable
due to the increase demand for daily supplies after
disasters.

2.4. Interdependency Strength
Cascading failures propagate through interdepen-
dent links, transferring damage from a single net-
work to multiple networks and increasing the en-
tire system’s vulnerability. The interdependency
strength, calculated according to Eq. (5), is based
on the integration of the difference in the system’s
vulnerability considering the presence of interde-
pendent links over time.

εαS =
∑
t∈T

∑
Mi∈S

γMi
(δα
Mi

(t)− δαMi
(t)) (5)

In Eq.(5), εαS characterizes the interdependency
strength of system S subject to earthquake α,
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NS represents the number of networks in system
S. Mi and Mi denote the ith network with and
without interdependency in system S respectively.
T refers to the period before the system reaches
a new stable state. γMi quantifies the relative
importance of each single network to the whole
system, which is a normalized variable following
the relationship

∑
Mi∈S

γMi
= 1.

3. Simulation Analysis
This section uses an interdependent gas-power-
water system as an example to illustrate the ap-
proach outlined in Section 2.

3.1. System Modeling
The case study considers the gas-power-water sys-
tem in Shelby County, Tennessee, with the lati-
tude of 35◦N and longitude of 90◦W. All three
networks are run by the same utility company,
Memphis Light, Gas and Water, the largest three-
service utility company in the US. The layout of
the three networks is depicted in Fig. 3. The water
distribution network includes 9 pumping stations,
6 storage tanks and 34 deliver nodes. The power
grid includes 9 power plants, 37 23-kV and 12-
kV substations and 14 intersection points. The
gas distribution network includes 3 extraction sta-
tions and 13 regulator stations. Pumping stations,
power plants and extraction stations are consid-
ered supply nodes where resources are generated
or extracted, while all other types of facilities are
considered to be demand nodes that directly serve
end-users.

Fig. 3.: The topology of the gas-power-water sys-
tem in Shelby County, Tennessee.

To generate interdependent links between each
pair of networks, each supply node is connected
with its three nearest demand nodes in the corre-
sponding dependent network. Since the interde-
pendent infrastructure system of Shelby County
is located within a relatively small geographical
area, the population is assumed to be evenly dis-
tributed with a density of 166 p/mi2 (Bureau,

2019). The initial flow is estimated by solving
a linear programming problem. The system and
corresponding flow information is visualized in
Fig. 4.

Fig. 4.: The gas-power-water system of Shelby
County. The nodes in green, red, and blue
represent facilities in gas, power and water net-
works. Intra-network flow is in purple while inter-
network flow is in black. The thickness of each
link represents the capacity of flow.

While Shelby County is subjected to a wide
range of hazards, such as earthquakes, floods, and
storms, the extreme event considered in this case
study is assumed to be an earthquake with varying
magnitudes and a hypothetical situation of varying
geographical locations of the epicenter. The value
of the parameters used for calculating the PGA of
each component is listed in Table 1.

Table 1.: Values of λ and ζ for different facilities

Parameter λ ζ

Gas Pumping Station ln(1.5) 0.8
Gas Substation ln(1.2) 0.6
Power Plant ln(1.4) 0.4
Power Substation ln(1.2) 0.4
Water Pumping Station ln(1.5) 0.8
Water Storage Tank ln(1.2) 0.6

The focus of this paper is the quantification
of interdependency strength. Therefore, for the
purpose of illustration and simplicity, the demand
value per capita rMi (t) in Eq. (4) is considered
a constant. Additionally, the three networks are
considered to be of the same importance to the
system, i.e. γMi

in Eq. (5) is 1
3 for all Mi ∈ S.

For each earthquake with a specified intensity and
epicenter, 100 initial failure scenarios are gener-
ated with Monte Carlo simulation.
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3.2. Functional Vulnerability
When the earthquake location is set at 30◦N,
90◦W and the magnitude varies from 0 to 10, it
can be seen that the system performance decreases
over time, Fig. 5. Regardless of the earthquake
magnitude, having interdependent links decreases
the system performance which is expected since
interdependent links propagate the initial failure
through links and nodes in other networks. These
newly affected nodes then become the seeds and
initialize the failure propagation in their corre-
sponding networks.

3.3. Interdependency Strength
To explore the relationship between interdepen-
dency strength and the earthquake magnitude, we
calculate the difference between the system per-
formance with and without interdependency un-
der different earthquake magnitudes. As shown
in Fig. 6, interdependency strength varies with
seismic intensity. It can be observed that the in-
terdependency is strongest when the magnitude of
earthquake is within the middle range but weakest
when the magnitude is either too high or too low.

Fig. 5.: The performance deterioration of the sys-
tem under different seismic intensities.

This result is counter-intuitive because to the
idea that a stronger the earthquake will result in a
more severe disruption and a stronger contribution
of interdependent links to cascading effects and
system vulnerability. However, in this case, when
the intensity of an earthquake is so extreme that
many nodes at both ends of the interdependent
links are damaged and the initial failure scenarios
will be the same regardless of whether or not there
are interdependent links.

Fig. 6.: The interdependency strength under dif-
ferent seismic intensity.

Thus the flow redistribution and performance
deterioration in the interdependency case is not
significantly different from the independent one.
However, when the earthquake magnitude is
within a specific interval such that only one of
the two nodes incident to interdependent links is
damaged, the nodes at the other end will not be
damaged due to lack of propagation medium in
a system of independent networks. However, in
a system of interdependent networks, the failure
may propagate along the interdependent links to
the nodes in the other network, which further
highlights the role of interdependency strength.

As such, weak interdependency arises when
seismic intensity is extremely high or low, which
can be validated by Fig. 7. It can be seen that
interdependent links impact system performance
only when the seismic intensity is between 4 to
8. The maximum interdependency strength is 0.68
when seismic intensity is 5.2.

The relationship between the interdependency
strength and the earthquake epicenter is further
analyzed. In particular, Fig. 8 and Fig. 9 depict
the interdependency strength of the gas-power-
water system of Shelby County as a function of
hypothetical varying locations of the earthquake
epicenter. The color of each point in the heatmaps
indicates the interdependency strength when the
earthquake occurs at that point.

(5.2, 0.68)

Fig. 7.: The relationship between interdependency
strength and seismic intensity.
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In both Fig. 8 and Fig. 9, there exists a
clear light circular ring where the interdepen-
dency strength is much higher than in other areas.
When the earthquake epicenter is closer to Shelby
County, referring to the dark area inside the cir-
cular ring, the seismic intensity at the location
of nodes on both ends of interdependency links
is high and thus the nodes are more likely to be
damaged. Similarly, when the earthquake occurs
far away from Shelby County, referring to the dark
area outside the circular ring, the earthquake effect
is attenuated so much that nodes on both ends
remain undamaged. In both of these two situa-
tions, the system performance remains the same
when interdependency is incorporated, indicating
low interdependency strength (the difference of
the performance between the two scenarios).

-95 -92.5 -87.5 -85
30

32.5

37.5

40

Fig. 8.: The interdependency strength under dif-
ferent locations of earthquake epicenter with mag-
nitude 3. The lighter color represents higher
interdependency strength while the darker color
indicates a less significant interdependency.

-95 -92.5 -87.5 -85
30

32.5

37.5

40

Fig. 9.: The interdependency strength under dif-
ferent locations of earthquake epicenter with a
magnitude of 4.

It is only when the epicenter of the earthquake
is located within the circular ring that only one
of the two nodes has a higher likelihood of being

damaged, hence, the interdependency can impact
the system functionality. We define this circular
ring as the ”Activation Zone” (AZ) and the dark
area the ”Silent Zone” (SZ) of the interdepen-
dency. It can be also observed that the AZ is
smaller in Fig. 8 than in Fig. 9. Since the effect
of a stronger earthquake requires longer distance
to be attenuated when compared to a weaker earth-
quake, the original AZ in Fig. 8 where exactly one
of two nodes is damaged becomes SZ in Fig. 9 and
the new AZ moves further away from the center.

4. Conclusion
This paper presents a probabilistic framework for
assessing the interdependency strength of systems
considering physical interdependency and cascad-
ing failures. The case study reveals that the
strength of interdependency is affected by both
seismic intensity and epicenter location. Concern-
ing the intensity, there exists a threshold below
which interdependency strength increases with
the intensity and beyond which interdependency
decreases with the intensity. For the epicenter
location, interdependency responds only to the
earthquake happening in the activation zone of
the system. Different systems have different ac-
tivation zones, even within the same system, the
activation zone will change according to seismic
intensity. It is only when the earthquake occurs in
the activation zone that the interdependency will
impact the system performance.

This paper reveals a counter-intuitive but criti-
cal phenomenon that the interdependency effect is
not exclusively determined by system factors such
as network topology and flow. It is also affected
by external factors such as the intensity and loca-
tion of disruptions. The insight can inform priori-
tization of resource allocation and assist risk man-
agers and decision makers in identifying strate-
gies for the protection of specific interdependency
links, i.e. investment should be made in the case
of the earthquake occurring in the activation zone.

Future work will expand the proposed frame-
work to investigate the resilience of infrastructure
systems with real interdependent links and include
additional types of disruptions and interdependen-
cies.
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