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As cracks on concrete bridges become severer and more frequent, methods of detecting cracks on concrete bridges have aroused
great concern. Conventional methods, e.g., manual detection and equipment-aided detection, suffer from subjectivity and
inefficiency, which increases demands for an accurate and efficient method to detect bridge cracks. To this end, we modify the
existing percolation method and propose an enhanced percolation method, which detects cracks of concrete bridges auto-
matically.)emodification includes three improvements, which are (1) employing photo expansion to eliminate boundary effects,
(2) varying shape factors to increase the accuracy of percolating unclear cracks, and (3) decreasing the number of neighbouring
pixels to form candidate sets. Combined with the above three improvements, three versions of enhanced percolation methods
utilizing three different shape factors are put forward. )e numerical experiment on detecting cracks in 200 images of the bridge
surface demonstrates the outperformance of the enhanced percolation method in precision, recall, F-1 score, and time compared
with traditional detecting methods. )e proposed method can be generalized on the application of detecting other types of bridge
diseases, which is an advantage for designing, maintaining, and restoring infrastructures.

1. Introduction

Bridge serves as one of the most important components in
infrastructures, which imposes significant effect on the
economy and social activities. With the increasing number
of bridges but the inadequate funds and poor techniques for
their maintenance [1–4], aging problems such as damages
and deformations become severer and more frequent.
According to the National Bridge Inventory (2008), there are
71,466 structurally deficient and 79,922 functionally obsolete
bridges in the US [5]. On March 15, 2018, the collapse of the
concrete bridge, “FIU pedestrian bridge,” caused six deaths
and permanent disability of one worker in Florida [6].
Although the accident is directly caused by the design error,
the engineers’ ignorance of cracks resulted in the miss of the
best time of repairing the bridge [7]. )e accident could be

avoided had the civil engineers detect those growing cracks
and shut down the street. )erefore, to guarantee normal
operations of bridges, regular inspection and periodic
maintenance are necessary. Manual inspection and equip-
ment-aided inspection are two main kinds of bridge in-
spection methods [8]. However, they more or less have some
limitations. In manual inspection, workers count the
number of cracks and measure their sizes through crack
photos. )e quality and reliability of diagnosis reports on
bridge cracks are highly dependent on the experience and
education of the inspection workers, which suffer so much
from subjectivity [9, 10]. In the equipment-aided inspection,
poor technical feasibility and high expenses are two main
drawbacks [8]. Besides, inefficiency of the human inter-
vention leads to the incapability of the above two methods to
be utilized in large-scale detections. )erefore, it is essential
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to develop an efficient and automated method to detect
bridge damages.

Recently, the development of computer vision enables
researchers to apply techniques of image processing to detect
damages of bridges [11]. Comprehensive reviews have been
delivered by many scholars in the current literature [12–15].
Koch et al. [13] presented systematical summarization of
defect detection and condition assessment of civil infra-
structures, especially reinforced concrete bridges, based on
image procession. )ey divided the detection process into 5
stages from the bottom to top level, which were pre-
processing, segmentation, feature extraction, object recog-
nition, and structural analysis. In each stage, specific
methods for defect detection, classification, and assessment
were given. Mohan and Poobal [14] analyzed 50 papers
about crack detection from five features: the image-pro-
cessing techniques, objectives, accuracy level, error level, and
the image datasets. )ey proposed a general architecture for
crack detection using the image-processing technique.
Jahanshahi et al. [15] provided a survey and an evaluation of
some of the promising vision-based approaches for auto-
matic detection of cracks and corrosion in civil infra-
structure systems, including edge and line detection,
morphological functions, clustering, and pattern recogni-
tion. Rose et al. [9] reviewed current detection approaches
for cracks on the concrete surface and classified them
generally into edge detection, segmentation and percolation,
machine learning methods, and morphology operations.
Inspired by the above crack detection methods, we rigor-
ously classify the relevant methods broadly as edge detec-
tion, percolation, machine learning methods, and other
techniques, which are covered, respectively, in the following
paragraphs.

Edge extraction is a simple way to detect bridge cracks.
Due to the difference in pixel values between cracks and
backgrounds of the bridge surface, cracks can be treated as
edges and then extracted from backgrounds [16–20]. )ere
are two key steps in edge extraction. Firstly, the gradient
value of pixels is calculated by applying filters on target
images. )en, a threshold is set, and pixels with higher
gradient value are classified into edges, i.e., cracks. Sobel and
Canny are two typical detectors used in edge extraction
[16, 21, 22]. Lim et al. [20] employed another detector,
Laplace, to identify cracks and located them on the bridge
surface. However, due to keen sensitivity to the noise, edge
detection very easily mistakes stains for cracks. Accordingly,
many works were designed to incorporate noise reduction
into edge detection. Pan et al. [23] introduced a new
threshold-based denoising algorithm, and the result showed
that it performed better and required less computation. Li
et al [19] utilized the wavelet based-algorithm to enhance,
smooth, and denoise images.

Percolation method is another way to detect bridge
cracks. In this method, two features of cracks are utilized:
linear shape and the difference of pixel values between cracks
and backgrounds [11, 24–30]. Yamaguchi and Hashimoto
[24] proposed a novel crack detection method for a concrete
surface image using percolation. )ey evaluated whether a
random pixel was crack or not based on the shape of a cluster

formed using percolation processing. Later, they utilized
three techniques to increase the accuracy and reduce the
computational time [11, 25–27]. However, this method is
still time-consuming, and some noise areas are falsely de-
tected as crack regions. To overcome the problems above, Qu
et al. [28] improved the percolation algorithm by including
an accelerated algorithm and a new denoising method.
Experimental results showed that the proposed algorithm
could be used for accurately and efficiently detecting cracks
in the image. Building on this work, they further combined
genetic programming and percolation model and lining
seam elimination and percolation model to take full account
of the specific characteristics of the concrete surface [29, 30].
)e experimental results show that the algorithm can not
only quickly and accurately detect the concrete surface
cracks but also eliminate the interference, such as stains and
blocks.

A great many techniques frommachine learning, such as
neural network, have been employed in detecting cracks
[31–36]. Prasanna et al. [31] utilized the support vector
machine to detect cracks on the bridge slab, but the accuracy
was not very high. Lattanzi and Miller [32] combined the
Canny detector andK-means classification and applied them
to detect bridge cracks. )e accuracy was high, and the
recognized speed was fast. However, the method was sus-
ceptible to light condition. With the advent of the convo-
lution neural network (CNN), the performance of computer
vision achieved a giant leap in detecting and classifying
objects, as well as cracks. Kim et al. [33] used unmanned
aerial vehicles to take bridge photos and reconstructed the
bridge surface model. )en, they used the CNN to recognize
and quantify bridge cracks. )e ideas of deep learning and
transfer learning were used to enhance classifier ability. )e
training stage and testing stage cost 14min and 5 s, re-
spectively, and the results were satisfying. Silva and Lucena
[34] deepened the neural network. In their research, 2800
concrete bridge photos were for training, while 700 photos
were for testing.)e accuracy was very high, nearly to 92.3%.
Li et al. [35] employed the slide window technique to enlarge
their dataset.)e accuracy went up to 97.9%. Jahanshahi and
Masri [36] employed a 3D reconstruction technique to gain
image depth and combined the neural network and support
vector machine (SVM) to identify cracks. )e method re-
duced interference of camera pose and resolution, but the
accuracy was just 80%.

A broad spectrum of other approaches has been pro-
posed for crack detection. Employing depth information of
points in cracks and backgrounds is another way [36].
Cabaleiro et al. [37] presented an algorithm for the auto-
matic detection of cracks in timber beams sampled by Li-
DAR data. )ey pointed cloud of the beam face, removed
points inside the cracks, and projected them on a 2D co-
ordinate system to identify crack outlines. Abdel-Qader et al.
[38] used a PCA-based algorithm to detect bridge cracks.
)ey compared the performance of methods using PCA
alone, PCA with a linear feature process, and PCA on the
local region. However, the accuracy of the three kinds of
methods was affected dramatically by camera pose and
distance from where images were taken. Yu et al. [39] used
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robots to collect bridge crack images, but this method re-
quired to label the start and end points in cracks manually.
Oh et al. [10] used a crack tracking way to extract width and
length information of cracks. Zou et al. [40] proposed theF∗
seed-growing approach for automatic crack-line detection
through extending the F∗ algorithm, and based on this, they
developed CrackTree [41], which is a fully automated
method to detect cracks from pavement images.

Based on the percolation method [11, 24–30], this paper
incorporates three improvement techniques to increase the
efficiency of the original method. Image expansion is used to
eliminate the boundary effect of percolation. Linear and
quadratic functions are used to replace the constant stride
value to increase the accuracy of percolating unclear cracks.
Instead of using eight neighbouring pixels, four neigh-
bouring pixels are used to form the candidate area in the
percolation process. To validate the performance of the three
improvements, three experiments are designed accordingly.

Cracks on the surface of infrastructures are mainly di-
vided into four types based on the type of materials used for
their construction: concrete, asphalt, timber, and the
combination of them [37, 42–45]. During percolation, dif-
ferent pixel values between cracks and backgrounds, to-
gether with the shape of the final percolated area, are two
critical factors determining the final classification results.
However, as shown in Figure 1(a) of an asphalt surface, the
similarity of colours between cracks and backgrounds in-
creases the difficulty of differentiating cracks from the
background surface. For cracks on the timber surface shown
in Figure 1(b) [13], although colours of cracks and back-
ground areas differ significantly, areas owning such signif-
icant difference are not only limited to cracks but also spread
all over the timber surface, which causes percolation to
mistake flawless areas for cracks and therefore decreases the
detection performance. However, on the concrete surface in
Figure 1(c), not only do colours of cracks have a stark
contrast with backgrounds but also there are fewer noises on
the concrete surface compared with the timber one. )us,
after comparing the colour difference and noise distribution
among surfaces of four material types, the concrete surface is
the most suitable one to apply the percolation algorithm.

2. Materials and Methods

Initially, an existing percolation-based method to detect
cracks is introduced, and three experiments are designed to
illustrate the effect of three critical procedures during per-
colation. )en, three improvements are incorporated to
produce a new percolation method. After applying the
enhanced method to detect photos using the 200-dataset, the
effectiveness of the new method is demonstrated.

In the whole article, photos we use to validate the im-
provement or to evaluate the performance of our final
percolation algorithm come from the dataset containing 100
crack images and 100 background images. )e dataset was
collected from two primary sources: the first group was
collected online through googling “Concrete Bridge Cracks”
and selected carefully based on two metrics by experienced
bridge engineers. Firstly, we only consider the images of

concrete bridges since the linear shape of the cracks and
great difference in the pixel value between cracks and
backgrounds on the concrete surface are suitable for ap-
plying percolation methods. Secondly, the cracks on the
images should at least be recognized by humans. )e second
group was collected through real shooting. We went to the
lab and took photos of the surface of concrete bridge
components. By such two ways, we gathered about 6000
images. Every image was checked carefully, and 200 images
that were the most representative of the cracks and back-
grounds of concrete bridges were selected to form the 200-
dataset. Various resolution sizes of the 200 images are
transformed to a unified level by employing the resize
function in MATLAB. To promote the progress of the field,
we uploaded our source data online for peers’ convenience.
)e source data can be found at 6000-dataset and 200-
dataset.

2.1. Existing Percolation Model. )e idea of the percolation
model comes from the natural phenomenon of liquid
permeation. )is model is used in solving problems with
propagation nature, such as the spread of epidemics and
fires. )e connectivity of cracks enables the model to detect
the spreading phenomenon through percolation. For each
pixel in the image, a corresponding percolated area is
generated along with its shape factor.)e process is repeated
on every pixel until the completion of the whole image when
every pixel is assigned a percolated area as well as a shape
factor. )e closeness of the shape factor to 1 denotes the
likelihood of the corresponding pixel belonging to back-
grounds.)e process is detailed in [11, 24–27].)e following
three sections focus on three specific procedures used in the
process.

2.1.1. Line Detection Experiment. )e crack size varies from
bridges to bridges, and even on the same bridge, it can be
significantly different due to factors such as camera position
and resolution ratio. )erefore, it is necessary to make the
percolation method applicable to cracks with different sizes,
which cannot be achieved with the fixed-size window [27].
)e shortcoming of the fixed-size window is disclosed by a
line detection experiment, where an image of 100×100
resolution ratio with three black lines and white back-
grounds is used. )ree black lines are in different thick-
nesses, and we perform percolation 6 times on each line.
During the process, the size of the fixed window increases
from 5 to 30 with interval 5. Fourteen points are selected
from lines and backgrounds to illuminate the limitation of
the fixed-size window and generality of the flexible-size
window. Detecting crack areas, to some extent, is similar to
the process of differentiating lines from backgrounds, and
thus, replacing the fixed-size window with the flexible-size
window is reasonable, as shown from the experiment in
Section 3.1.1.

To speed up the percolation process, two strategies,
conditional termination and skip, are used. Two experiments
are designed as follows to illustrate their effects, respectively.
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2.1.2. Conditional Termination Strategy. Every time, the
percolated area reaches the boundary of the window, and the
size of the window is enlarged for the percolation process to
continue. However, if the shape of the current percolated
area has already been circular enough, namely, the shape
factor is already much closer to one, it is reasonable to
classify the corresponding pixel as the background pixel and
terminate the percolation process. To trigger this conditional
termination, we compare the value of the shape factor after
every iteration with a constant threshold value which is
defined in advance. Once the value exceeds the threshold, we
stop the percolation and thus save time [27].

We use three 500× 500 resolution ratio images and apply
percolation with and without the conditional termination
procedure on four pixels in each image. One of the images is
used twice. )e parameters are set as follows: N� 21,M� 41,
w � 1, and Ts � 0.2. Also, through tuning parameters and
watching the percolation time, we investigate the effects of
window sizeN andM on speeding up the performance of the
strategy. )e result is shown in Section 3.1.2.

2.1.3. Skip Strategy. During the first iteration of percolation
on the background pixel, due to its high pixel value, the
threshold value will also be very high, and both background
pixels and crack pixels will be included in the percolated
area. On the contrary, the threshold value during the first
iteration of percolation towards the crack pixel will be very
low, and only crack pixels can be included in the percolated
area. Based on this rule, we can evaluate whether the focal
pixel is a crack or not by checking whether its first-round
percolated area Dp contains background pixels. If there are
no background pixels, then the focal pixel might belong to
the crack area, and percolation should continue. Otherwise,
the percolation process is terminated, and the focal pixel is
classified as a background pixel [27].

We use one 100×100 resolution ratio image and apply
percolation without any strategy, with conditional termi-
nation strategy, and skip strategy on pixels in 2×11 areas.
)e parameters are set as follows: N� 10,M� 20, w � 1, and
threshold value Ts is set to 0.2, and the result is shown in
Section 3.1.3.

2.1.4. Percolation Using the Existing Method. )e existing
percolation method is applied to the 200-dataset, and four
typical images with 100×100 resolution ratio are selected to
illuminate the problems of the method. )e parameters are
set as follows: N� 10 and M� 20. Instead of comparing the
Fc value with Ts and setting the pixel value as 0 or 255, we
directly use Fc × 255 to update the pixel value. Such change
could reflect the relationship between the category of the
initial pixel, the shape of its percolated area, and the Fc value.
)e percolated results can be seen in Section 3.1.4.

In Section 2.1, the main points of the existing percolation
method are summarized, and three experiments are
designed to manifest their effects. In Section 2.2, improved
techniques based on problems of the existing percolation
method are proposed and validated through experiments.

2.2. Improved Techniques

2.2.1. Image Expansion. From the results of detecting
bridge cracks using the existing percolation method, an
obvious problem can be found that those pixels along the
image boundary, no matter whether they are cracks or
backgrounds, are all assigned a shape factor of low value
and coloured blue. )erefore, the current existing per-
colation method cannot differentiate cracks and back-
grounds in boundary areas. One possible reason is that the
percolated areas cannot extend beyond the image
boundary, making themselves more likely to be linear. To
eliminate the boundary effect, the image is enlarged by
adding pixels on the outside of the current image
boundary. )en, the original boundary areas become
inside, and the percolation in these areas will not be af-
fected by the boundary. )is pixel-adding technique is
called “image expansion.”

Based on the value of pixels we add, three types of image
expansion techniques are used: zero padding, same padding,
and mean padding. Zero padding adds pixels with zero
value, and same padding adds pixels with the same value as
the pixels in the original boundary areas. Mean padding adds
pixels with the value equaling the mean value of all pixels in
the original image. To figure out which one has the best

Little difference between 
background and crack area

(a)

Crack area
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Figure 1: Cracks on different types of surfaces: (a) asphalt pavement; (b) timber; (c) concrete.
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performance in terms of eliminating the boundary effect, we
use them, respectively, as the preprocessing of the existing
percolation method and compare them with the one without
expansion. In this experiment, two 500× 500 resolution ratio
crack images are used, and 20 pixels are added on the width
and height side of each image. Added pixels are removed
when percolation is completed. )e parameters are set as
follows: N� 21,M� 41, w � 1, and threshold value Ts is set to
0.2. )e performance of each expansion technique is shown
in Section 3.2.1.

2.2.2. Slacken Stride. Some of the unclear crack pixels are
ignored using the existing percolation method, especially
in images where the colour difference between cracks and
backgrounds is little. It is because the stride parameter w

takes a constant value. After a certain number of itera-
tions, the threshold value T increases to a high level due to
the contribution of w. )en, even those background pixels
with high pixel values are more likely to be included in the
percolated area and change its shape factor from near 0 to
1. )erefore, the constant value of w is replaced and set to
be a product of the shape factor of the percolated area and
the constant value [27]. Because the value of the shape
factor after the first iteration is between 0 and 1, the
increase of w can be well controlled by the linear function.
However, it is not the only way to realize the inhibiting
effect; a quadratic function and a cubic function are
designed to replace the constant value. )ese strides are
called linear, quadratic, and cubic strides, and this strategy
is called the slacken stride strategy. )eir equations are as
follows:

w′ � Fc · w, (1)

w″ � F
2
c · w, (2)

w″ � F
3
c · w, (3)

T � max maxp∈Dp
(I(p)), T􏼒 􏼓 + w′ orw″, (4)

Fc �
4 · Ccount

π · C
2
max

, (5)

where w′ is a linear function of Fc, w″ is a quadratic function
of Fc, and w″ is a cubic function of Fc. In equation (5), when
the shape factor grows nearer to 1, the area of the percolation
area grows closer to a circular shape. Since the cracks on the
surface of concrete bridges typically form in a linear shape,
the pixel from which the percolation starts is highly possible
to belong to the background area.

To validate the slacken stride strategy in terms of ac-
curacy, three pixels are selected from the background, un-
clear crack, and clear crack areas, respectively, to be
percolated using constant, linear, and quadratic strides.
Other parameters are set as follows: fixed stride value w � 1,
N� 10, M� 20, and the image resolution ratio is 100×100,
and the result can be seen in Section 3.2.2.

2.2.3. Four Neighbouring Pixels’ Region. In the existing
percolation method, the pixels to be included in the per-
colated area are selected from 8 neighbouring pixels based
on the assumption that cracks are connected. However,
pixels on the diagonal positions of the nine-patch are usually
not crack pixels even if the centre pixel is a crack one.
)erefore, we modified the corresponding procedure in the
existing percolation process by just using 4 adjacent pixels to
form the candidate area, as can be seen in Figure 2.

2.3. Final PercolationMethods. Combined with all improved
techniques detailed in Section 2.2, three final enhanced
percolation methods based on linear, quadratic, and cubic
strides are proposed.)e only difference between these three
methods is just they use three different equations, equations
(1) to (3), to update the stride value w, so their flowchart and
procedure are given only once, as shown in Figure 3.

2.3.1. Comparison with Classic Crack Detection Methods.
To evaluate the test result, we randomly select 50 images
from the 200-dataset and ask experienced bridge engineers
to mark crack pixels on each image. )ree measures, pre-
cision, recall, and F-measure, are computed by comparing
the detected crack curves against the human-annotated
ground-truth crack curves. Because the cracks in concrete
bridge images have a certain width, we allow a certain error
in measuring the coincidence between the detected crack
curves and the ground-truth crack curves. More specifically,
the average crack width in our dataset is around 3 pixels.
)erefore, a detected crack pixel is still considered to be a
true positive if it is located no more than 3 pixels away from
human-annotated crack curves. For the parameters, we set
w � 1, N� 10, M� 20, and Ts � 0.2. )e three methods are
compared with each other in terms of precision, recall,
F-measure, and time. )en, they are further compared with
the other five classic methods in [41]. )e results can be seen
in Section 3.3.1.

2.3.2. Practical Test. To test the practical performance of our
three enhanced algorithms, 200 concrete bridge images of
100×100 resolution ratio are percolated. )e parameters are
set as follows: w �1, N� 10, M� 20, and Ts � 0.2. Zero-
padding image expansion technique is used with the number
of pixels added on each side equaling 10. )e results are
included in Section 3.3.2.

(i) Firstly, image expansion and monochrome are
performed. )e size of the local window is fixed as
N×N, and the maximum window is defined as
M×M. )e initial stride is set as w. A pixel is
selected randomly in the image as the initial pixel,
and it is included in the percolated area Dp. )e
threshold value T is set as the initial pixel value.

(ii) )e threshold T is updated using equation (4), and
at the first iteration, Fc is set to zero.

(iii) )e four neighbouring pixels of all pixels on the
boundary of Dp are selected as the precandidate set
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Dpc. )e repeated pixels in Dpc are eliminated, and
the rest of them are defined as the candidate setDc.

(iv) In Dc, the pixels with values lower than the
threshold T are percolated and included in Dp. If
there are no such pixels in Dc, then pixels with the
lowest value are included in Dp.

(v) If the process is in its first iteration, it moves to step
(vi); otherwise, the process moves to step (vii).

(vi) Whether Dp contains background pixels is
checked; if so, the process goes to step (vii); oth-
erwise, Fc is set to 1, and the program turns to step
(xv).

(vii) Percolated area Dp is checked. If it reaches the
boundary of the local window, the process goes to
step (viii). Otherwise, it returns to step (ii).

(viii) N is incremented to N+ 2.
(ix) Fc value is calculated using equation (5), and the

threshold value T is updated using equation (4).
(x) Fc value is compared with Ts. If it is bigger than Ts,

the process ends, and Fc is set to 1. Otherwise, the
process moves to step (xi).

(xi) )e four neighbouring pixels of all pixels on the
edge of the Dp area are selected as the precandidate
set Dpc. )e same pixels in Dpc are eliminated, and
the rest of them are defined as the candidate setDc.

(xii) In Dc, the pixels with values lower than the
threshold T are percolated and included in Dp,
and the process moves to step (xiii). If there are no
such pixels, the Fc value is calculated using
equation (5), and the process terminates.

(xiii) Whether percolated area Dp reaches the boundary
of the updated local window is checked; the pro-
cess returns to step (ix) if no. Otherwise, the
process goes to step (xiv).

(xiv) N is incremented to N+ 2 and compared with the
maximum window size M. If N is larger than M,
the Fc value is calculated based on equation (5), and
the process goes to step (xv). Otherwise, the
process returns to step (ix).

(xv) If the Fc value is smaller than the threshold value,
the corresponding initial pixel is classified as the
crack pixel, and its pixel value is updated to 0 and

coloured black. Otherwise, the pixel is treated as
the background pixel, and its pixel value is updated
to 255 and coloured white.

(xvi) Whether all pixels in the image are percolated is
checked. If so, the program terminates; otherwise,
the process returns to step (i).

3. Results

Based on the existing percolation method and the im-
provements discussed in Section 2, their experiment results
are discussed and analyzed in this section.

3.1. Crack Detection Using the Existing Percolation Model.
In this part, the results of three experiments introduced in
Section 2.1 are given and analyzed. )en, crack detection
results by the existing percolationmethod are presented, and
their problems are specified.

3.1.1. Results of the Line Detection Experiment. )e perco-
lation results of 14 pixels using different window sizes can be
seen in Figures 4 and 5. As shown in Figure 4(a), when the
window size is set to 5, the percolated regions of pixels 5 and
8 inside thick andmiddle lines are a near-circle, making their
colour as white as background pixel 2. However, in terms of
pixels in the thin line such as 12 and 13, the percolated
regions are linear and coloured black. All these pixels are
located among line areas, but they have different percolated
results. It is because when the window size is too small
compared with the size of the target to be percolated, the
enlarging percolated region touches the window before
reaching the target’s boundary.)erefore, the region’s shape
factor value cannot reflect the shape of the target very well,
and using this value to classify the pixel will produce errors.
)e analysis can be further proved by the changing values of
shape factors as window size increases, which are shown in
Figure 6 and Table 1. As the window size increases, the shape
factors of those crack pixels decrease, such as pixels 3 to 14.
In addition, those background pixels remain high such as 1
to 2, which means the fixed-size window is not suitable for
percolating pixels of various sizes. )erefore, we should
replace the fixed-size window with a flexible-size window to
increase the percolation performance.

54

140

120

130

150

(a)

54

140

120

130

150

(b)

Figure 2: )e selection of the candidate area during percolation: (a) eight neighbouring pixels’ region; (b) four neighbouring pixels’ region.
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Figure 3: Flowchart of the enhanced percolation method.
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3.1.2. Performance of the Conditional Termination Strategy.
)e percolation time, iteration number, and shape factor
value of the four pixels with and without the conditional
termination procedure are shown in Table 2. )e reduced
time and iteration number together with the almost un-
changed shape factor value demonstrate that the strategy can
not only accelerate the percolation method but also has no

effect on its accuracy. From Figures 7–10, we can also see
that the size of the percolated area of each pixel decreases,
and their whole shapes remain the same.

Besides, by tuning the upper and lower bound of the
window, the effect of them on the percolation performance is
illustrated. In Figure 11(a), as the upper bound of the

(a) (b) (c) (d)

Figure 4: Percolation result of 100 resolution images using different window sizes: (a) 5 window size; (b) 10 window size; (c) 20 window size;
(d) 30 window size.
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Figure 5: Percolation areas of 14 pixels using different window sizes: (a) 5 window size; (b) 10 window size; (c) 20 window size; (d) 30
window size.
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Figure 6: )e relationship between the value of the shape factor
and the size of the percolation window.

Table 1: Fc value of percolation regions of different pixels in 100
resolution images.

Pixel/window size 5 10 20 30
1 0.88 0.75 0.76 0.83
2 0.88 0.75 0.70 0.67
3 0.73 0.58 0.49 0.44
4 0.57 0.43 0.41 0.40
5 0.88 0.75 0.63 0.50
6 0.57 0.48 0.75 0.58
7 0.53 0.75 0.42 0.16
8 0.78 0.51 0.31 0.22
9 0.57 0.43 0.36 0.28
10 0.6 0.52 0.37 0.15
11 0.25 0.13 0.06 0.03
12 0.25 0.11 0.06 0.04
13 0.53 0.29 0.17 0.13
14 0.49 0.29 0.14 0.06
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Table 2: )e performance of the conditional termination strategy.

Image Pixel coordinates
Time (s) Iterations Fc value

Before After Before After Before After
Crack 3 (100, 100) 1.09 0.1062 24 13 0.3291 0.4905
Crack 3 (20, 100) 2.77 0.21 22 13 0.6345 0.6433
Crack 23 (100, 115) 1.22 0.0781 23 13 0.4211 0.3470
Crack 5 (20, 100) 2.71 0.2182 22 13 0.6323 0.6477

(a) (b) (c)

Figure 7: Percolation regions of pixel (100, 100) in image crack 3: (a) raw image; (b) without termination; (c) with termination.

(a) (b) (c)

Figure 8: Percolation regions of pixel (20, 100) in image crack 3: (a) raw image; (b) without termination; (c) with termination.

(a) (b) (c)

Figure 9: Percolation regions of pixel (100, 115) in image crack 23: (a) raw image; (b) without termination; (c) with termination.

Advances in Civil Engineering 9



window increases, the time and iterations of the percolating
single pixel without the conditional termination increase but
stay the same with the termination. )is is because before
using the conditional termination, the higher the window
upper bound is, the more iterations the percolated area Dp
need to reach the boundary and thus the more time the
percolation takes. However, after improvements, the end of
the process does not depend on the window upper bound
any more but on whether the shape factor exceeds value Ts.
As a result, as long as Ts remains unchanged, the time and
iteration number will not change. In Figure 11(b), as the
lower bound of the window increases, the time and iterations
without the termination remain at a high level but increase
with the termination. Once the window lower bound ex-
ceeds a certain degree, the time and iterations will be the
same as the ones without improvements. )is is because the
conditional termination strategy is only effective after the
percolation area exceeds the lower bound of the window. So,
the increase of the lower bound delays the first work of the
termination strategy, extending the time and iteration
number of the whole process. If the lower bound goes up
very close to the upper bound, then the first stage that does
not contain the termination procedure will last a long time,
and the whole process will end immediately when it enters
the second stage where the termination works.

3.1.3. Performance of the Skip Strategy. After percolation
towards 22 pixels under the three situations mentioned in
Section 2.1.3, the results and their corresponding percolated
areas are shown in Figures 12–15. Apart from the speeding-
up effect of conditional termination, we can also see the
percolation process towards pixels 42, 48, 49, and 50 is
skipped directly in Figure 16, where the percolation time and
iteration number are nearly zero. It should be noted that
both strategies do not work for pixels such as 43 to 47.)is is
because all of these pixels are among crack areas, which

cannot trigger the strategies, but the extra procedures to
realize them will cause extra time burden. Fortunately, the
time burden can be ignored compared to the huge contri-
butions made by the two strategies. From Figure 17, using
different strategies to percolate the same image of different
resolution ratios, the performance of combining two
strategies is better than using either of them alone. In ad-
dition, the clearer the image is, the better the speeding-up
effect is. By visualizing the percolated area in each situation,
Figures 12–15 demonstrate how the two strategies work. )e
percolated region of each pixel in Figure 14 is much smaller
than the one in Figure 13, which means the termination
strategy is triggered. Percolated regions of some pixels in
Figure 15 almost disappear, which means the skip procedure
works.

3.1.4. Percolation Result of Our Dataset. Following the
existing percolation process, cracks are detected using our
own dataset, and four images are listed in Figure 18 to show
the results. In Figure 19, we can see that most crack pixels are
coloured blue, while background pixels are coloured yellow,
which means the crack area can be differentiated from the
background area by the method. However, there are still two
problems to notice. Firstly, in boundary areas, no matter
whether the pixels belong to crack or not, they are all
coloured blue, as shown in Figures 19(a)–19(d). Secondly, in
unclear crack images, many crack pixels are ignored, and
many background pixels are mistaken for crack pixels as
shown in Figures 19(a)–19(d). Such problems will be dis-
cussed and solved in Section 3.2.

3.2. Performance of Improved Techniques

3.2.1. Image Expansion. To eliminate the boundary effect of
the existing percolation method shown in Figures 19 and 20,
three kinds of image expansion techniques are used, and the

(a) (b) (c)

Figure 10: Percolation regions of pixel (20, 100) in image crack 5: (a) raw image; (b) without termination; (c) with termination.
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Figure 11:)e effect of changing parameters on time and iterations of percolation on the single pixel: (a) window upper bound; (b) window
lower bound.
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Figure 13: Percolated results using no strategies.

Figure 14: Percolated results using the conditional termination strategy.
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percolation results of crack images in Figure 21 are given as
follows. In Figure 22, the boundary effect is lessened, but
there are still a few tracks of boundary areas which remained.

In Figure 23, the boundary effect on percolation towards
crack 2 is removed but remains on the horizontal side of
crack 1. In Figure 24, the boundary effect is eliminated in

Figure 15: Percolated results using conditional termination and skip strategies.
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Figure 16: Results of the percolating single pixel using different speeding-up strategies: (a) percolation time; (b) percolation iterations.
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(a) (b)

(c) (d)

Figure 18: Four crack images to be percolated: (a) image 1; (b) image 2; (c) image 3; (d) image 4.
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Figure 19: Continued.

Advances in Civil Engineering 13



0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(c)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(d)

Figure 19: Percolation result of 100 resolution images using the existing percolation method: (a) image 1; (b) image 2; (c) image 3; (d) image 4.

(a) (b)

Figure 20: Percolation results without any image expansion techniques: (a) crack 1; (b) crack 2.

(a) (b)

Figure 21: Original images: (a) crack 1; (b) crack 2.
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(a) (b)

Figure 22: Percolation results using the mean-padding technique: (a) crack 1; (b) crack 2.

(a) (b)

Figure 23: Percolation results using the same-padding technique: (a) crack 1; (b) crack 2.

(a) (b)

Figure 24: Percolation results using the zero-padding technique: (a) crack 1; (b) crack 2.
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both directions of both images. )erefore, zero padding is
chosen as the best image expansion technique and used as
the preprocessor of percolation. )e boundary effect is due

to the near-linear shape of the percolation area initiated at
the boundary of the image. If we pad zero pixels outsize the
original image, the percolation area of the boundary pixel

(a) (b) (c) (d)

Figure 25: Percolation result of a background pixel using different striding strategies: (a) raw image; (b) fixed stride percolation; (c) linear
stride percolation; (d) quadratic stride percolation.

(a) (b) (c) (d)

Figure 26: Percolation result of an unclear crack pixel using different striding strategies: (a) raw image; (b) fixed stride percolation; (c) linear
stride percolation; (d) quadratic stride percolation.

(a) (b) (c) (d)

Figure 27: Percolation result of a clear crack pixel using different striding strategies: (a) raw image; (b) fixed stride percolation; (c) linear
stride percolation; (d) quadratic stride percolation.
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grows into the circular shape rather than the linear shape,
which therefore is deemed as the background pixel. One
obvious advantage of the zero-padding technique over
mean-padding and the same-padding techniques is that it
eliminates the boundary effects without adding other po-
tential noises. However, the mean padding and the same
padding will impose pixels with nonzero values outside the
image. )e difference between the nonzero pixels and the
zero pixels lying on the original boundary forms the per-
colated area to be the linear shape, which is out of our
expectation.

3.2.2. Slacken Stride. )e percolation areas of the three
pixels using constant, linear, and quadratic strides are
shown in Figures 25–27. In Figures 25 and 27, it is
reasonable to see the percolation areas are in circular and
linear shapes. In Figure 26(b), the percolation area, which
should have been linear, is circular, and thus, the cor-
responding pixel is mistaken for the background pixel,
illustrating the problem of using the constant stride. In
Figure 26(c) and 26(d), the linear shape of the percolation
area matches our expectation and validates the effect of
the slacken stride strategy.

Figure 28 shows the alterations of parameters w, w′,
and w″ and threshold values T, T′, and Tʺ. From
Figure 28(a), the stride values w′ and w″ in the unclear
and clear crack case increase at first and then decrease
close to 0. Both of them decrease less than 1 after a number
of iterations and become near 0 eventually, whereas in the
background case, the stride values w′ and w″ are not close
to 0, which reflects that the percolation shape is near-

circular. From Figure 28(b), the improved method can be
further verified through the alteration of the threshold
value T. In the situations of clear and unclear crack, T′and
Tʺ stay almost unchanged, while T gradually increases in
all situations. )erefore, the unclear cracks are mistaken
for background in the fixed stride case but are still
regarded as cracks in another two cases. Note that the
entire stride values increase during the first iteration,
which seems unusual. It is because during the first iter-
ation, the square value of the diameter of the percolated
area is far smaller than the number of pixels among it,
making the Fc value bigger than 1 and causing such un-
usual increase.

3.3. Performance of the Final Improved Percolation Model

3.3.1. Performance Evaluation. )e precision, recall, F-1
score, and time of percolating each image are presented in
Figures 29–33. We can see that, in linear and quadratic
cases, precisions are almost up to 90%, recalls are between
50% and 90%, and F-1 scores are up to 80%, while in the
cubic case, all of three indexes are lower. Besides, in
Figure 32, the percolation time using linear and quadratic
strides is on average smaller than using cubic strides.
Furthermore, we define a parameter T∗ by equation (6),
which represents the relative percolation time of each
stride. In equation (6), the numerator is the average value
of the percolation time over 50 images, and the denom-
inator is the maximum of the average value among three
strategies. By computing the average values of the first 3
indexes over the 50 images and the relative percolation
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Figure 28: )e effectiveness of the slacken stride strategies: (a) alteration of the stride parameter; (b) alteration of the threshold
value.
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time, a comparison result between the three stride
strategies is given in Figure 33. )e linear and quadratic
strides are better than the cubic one.

T
∗
type �

1/50􏽐
50
i�1 t

i
type

max 1/50􏽐
50
i�1 t

i
type􏼐 􏼑

, type � linear, quadratic, and cubic.

(6)

In addition, their performances are further compared
with 5 other classic crack detection methods, and the results
are shown in Table 3. We can see that both linear and

quadratic percolation methods have a higher precision but a
lower recall than CrackTree [41]. Moreover, their F-1 scores
are roughly the same, which means our enhanced perco-
lation methods, in some level, achieve a better performance
than the classical method.

3.3.2. Real Test Result. Due to space limitation, here we
just present percolation results of 27 images using linear,
quadratic, and cubic stride strategies. )e results of our
whole 200-dataset are uploaded and can be seen in the
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Figure 29: )ree evaluation indexes of 50 images from the 200-dataset using the linear stride.
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Figure 30: )ree evaluation indexes of 50 images from the 200-dataset using the quadratic stride.
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same link of our 200-dataset. In Figures 34–36, each row
lists several images to be percolated, and their corre-
sponding percolation results are listed in the following
row. We can see that almost all cracks are detected and
localized successfully in linear and quadratic cases.
However, there are also some problems to be noticed. In
the cubic situation, many unclear cracks are ignored and

treated as backgrounds. When the raw image contains
noise or some other objects with similar properties to
cracks, the method will mistake them for cracks and mark
them too in the results. Besides, for those extremely
unclear cracks, even though the method can detect them,
they cannot be localized precisely. Such problems will be
discussed further in Section 4.
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Figure 32: Time to percolate 50 images from the 200-dataset using three types of strides.
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Figure 31: )ree evaluation indexes of 50 images from the 200-dataset using the cubic stride.
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Figure 33: )e percolation time of images using the 200-dataset with different stride values.

Table 3: Comparison of the crack detection performance between eight different methods [41].

Method pbCGTG gpb pbCanny Seg-ext CrackTree Linear Quadratic Cubic
Precision 0.34 0.36 0.30 0.57 0.79 0.91 0.91 0.83
Recall 0.36 0.49 0.21 0.63 0.92 0.83 0.81 0.53
F-1 score 0.35 0.41 0.25 0.59 0.85 0.87 0.85 0.65

Figure 34: Percolation results using the enhanced percolation method with the linear stride.
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Figure 35: Percolation results using the enhanced percolation method with the quadratic stride.

Figure 36: Percolation results using the enhanced percolation method with the cubic stride.
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4. Conclusions

In this paper, an existing percolation method is presented,
and three experiments are performed to illustrate its three
limitations: boundary effects, unclear cracks, and eight
neighbouring pixels’ region. Based on these three limita-
tions, we devise the enhanced percolation method by adding
three improvements, which are image expansion, slacken
stride, and four neighbouring pixels’ region, respectively.
)e effect of each technique is demonstrated by the cor-
responding experiment. )e enhanced percolation method
is applied on the 200-dataset, and we compute the precision,
recall, and F-1 for measuring the performance of the pro-
posed method. By comparing with the classical crack de-
tection methods, percolation using linear and quadratic
strides performs better and can be used to detect concrete
bridge cracks. To apply these twomethods to detect cracks in
real life, we still need to be careful about problems such as
the light condition when shooting, the camera position, and
angle. Dark light will lessen the difference of colour between
cracks and backgrounds, and wrong-positioned cameras will
make cracks lose their linear shape, both of which will cause
detection errors. However, since the primary purpose of this
paper is to propose an efficient method to detect concrete
bridge cracks, solutions to these practical problems are
omitted here.

Even though the method has gained good perfor-
mance, there are still several limitations to pay attention
to, which will be the focus of our future work. Firstly, for
damages owning similar colour and linear shape as cracks,
the enhanced method cannot differentiate them very well.
)e solution to this is to turn to the convolutional neural
network for help. We collect photos of different types of
bridge damages, split them into different datasets, and
train the network to classify those photos into different
damages. )e second limitation is that we just clarify how
to detect cracks from bridge photos. However, for how to
get those photos and what qualities, such as the camera
position and light condition, we require for those photos if
they want to be detected correctly, are not specified. Both
of these limitations will be discussed further in our future
work.
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