
1

A Survey on Privacy in Graph Neural Networks:
Attacks, Preservation, and Applications

Yi Zhang∗, Yuying Zhao∗, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, Philip S. Yu, and Tyler Derr

Abstract—Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and
the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a
lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue,
researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of
the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing
the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and
reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential
directions for future research in order to build better privacy-preserving GNNs.

Index Terms—Graph Neural Networks; Privacy Attacks; Privacy Preservation; Deep Learning on Graphs

✦

1 INTRODUCTION

Graph-structured data, notable for its capacity to represent
objects along with their interactions for a broad range of
applications, is ubiquitous in the real world. Compared
with independent and identically distributed (i.i.d) data
that are typically utilized in deep neural networks (DNNs),
graph data is more challenging to deal with due to its
complexity in capturing object relationships and its irregular
and non-grid-like shapes. To tackle the above challenges,
various Graph Neural Networks (GNNs) [1], [2], [3], [4]
are developed for multiple tasks such as node classifica-
tion [5], [6], link prediction and recommendation [7], [4],
community detection [8], [9] and graph classification [10],
[11]. These models have achieved unprecedented success for
applications across different domains such as e-commerce
and recommender systems [12], [4], [13], social network
analysis [14], [15], financial quantitative analysis [16], [17],
and drug discovery [18], [19].

Despite their remarkable success in solving real-world
tasks, most of GNNs lack privacy considerations. They
are designed to achieve high performance, leaving private
information vulnerable against attack. Consequently, data
privacy and safety from high-stake domains (e.g. finance,
social, and medical) involving sensitive and private in-
formation could be undermined. In other words, without
well-designed strategies, private information is constantly
subjected to leakage. Even worse, a large variety of attack
models are designed based on the vulnerability of the

* denotes equal contribution and co-first authorship

• Y. Zhang, Y. Zhao, X. Cheng, Y. Wang. and T. Derr are
with Vanderbilt University, Nashville, TN, USA. Email:
{yi.zhang,yuying.zhao,xueqi.cheng,yu.wang.1,tyler.derr}@vanderbilt.edu

• Z. Li is with The Chinese University of Hong Kong, Hong Kong SAR,
The People’s Republic of China. Email: zhaoqingli@link.cuhk.edu.hk

• O. Kotevska is with the Oak Ridge National Laboratory, Oak Ridge, TN,
USA. Email: kotevskao@ornl.gov

• Philip S. Yu is with the University of Illinois Chicago, Chicago, IL, USA.
Email: psyu@uic.edu

models. The aforementioned issues have become increas-
ingly concerning, which spawned government regulations
and laws for combating malicious attacks. For instance,
the California Consumer Privacy Act (CCPA) was signed
into law to protect customers’ privacy by regulating the
collected information from businesses; the European Union
has proposed a guideline that highlights the importance of
trustworthy AI and indicates one of the ethical principles
that a system should follow is the prevention of harm.
Therefore, it is crucial to protect private data within GNNs
(i.e., the privacy of the graph-structured data and the model
parameters).

However, the requirement for privacy protection in
GNNs differs from that of the traditional DNNs. In addition
to the need to protect sensitive features of node/graph
instances, there is also the need to protect the relational
information among entities in graphs which is at risk of
exposure. Furthermore, the unique message-passing mech-
anism exacerbates the challenge of protection since sensi-
tive/confidential features might be potentially leaked dur-
ing the propagation process. As a result, the existing pri-
vacy protecting methods developed for DNNs may not be
readily adaptable to graphs, thereby imposing additional
privacy requirements. These privacy requirements emerged
uniquely in the graph domain have motivated a stream
of work by cybersecurity experts and GNN researchers
from academia and industry. In this work, we give a com-
prehensive survey about the attack strategies and privacy
preservation techniques. We categorize the attack strategies
into four categories, including Model Extraction Attacks
(MEA) [20], [21], Graph Structure Reconstruction (GSR) [22],
[23], [24], Attribute Inference Attacks (AIA) [25], and Mem-
bership Inference Attacks (MIA) [26], [27], [25], [28], where
attackers aim to infer different parts of the graph data and
GNN-based models. Specifically, MEA aims to extract a
model that has similar behavior to the original model; GSR
endeavors to reconstruct the graph structural information
from limited information; AIA aims to infer the sensitive

ar
X

iv
:2

30
8.

16
37

5v
3

 [
cs

.L
G

]
 1

9
Se

p
20

23

2

features, and MIA seeks to determine whether a certain
component (e.g., node, edge, sub-graph) is contained in the
training dataset. For privacy preserving techniques, they
are summarized into four directions, namely, Latent Factor
Disentangling [29], [30], [31], Adversarial Training [29], [32],
[33], Differentially Private Approach [34], [35], and Feder-
ated Learning [36], [37], [38]. Generally, the goal of latent
factor disentangling is to learn the representations that do
not contain confidential information. Adversarial training
aims to minimize the impact of specific attacks by reducing
the performance of attacks during the training process.
Differentially private approach utilizes differential privacy
techniques to ensure data privacy. Federated learning [39],
on the other hand, seeks to develop distributed learning
frameworks that enable various organizations to collaborate
in training a model without sharing their own data.

This survey is primarily focused on investigating the pri-
vacy aspect of GNNs and the organization is as follows: We
start by introducing the preliminary context and summariz-
ing the relation to other surveys in Section 2, which includes
the privacy concept on data, traditional privacy/attacks on
deep learning, and the basic knowledge of graph data and
deep learning on graphs. We then present different types of
privacy attack methods on GNNs in Section 3. Thereafter,
in Section 4 we discuss privacy preserving techniques for
GNNs. The currently used and more possible graph datasets
for studying GNN privacy attacks/preservation along with
applications are summarized in Section 5. After that, we
discuss the future directions in Section 6 and then conclude
in Section 7.

2 PRELIMINARIES OF DATA PRIVACY, ATTACKS
AND DEEP LEARNING ON GRAPHS

In this section, we introduce the preliminaries for the pri-
vacy of data and models. We begin with the privacy of
non-graph data and discuss the privacy and attacks in the
general deep learning (DL) domain. After that, we introduce
graph, graph data, and their deep learning techniques.

2.1 Privacy on Data
Data privacy refers to protecting sensitive and confidential
information such as personal identifiable information (PII)
or information related to national security infrastructure.
One standard approach to enhance the privacy of structured
static data is to mask sensitive information, and it is used for
query extraction, analysis, and sharing. Standard masking
techniques such as k-anonymity, l-diversity, and t-closeness
[40] are limited because another publicly accessible dataset
could be used to re-identify the masked entries.

The above limitation allured a series of de-
anonymization attacks aiming to extract or infer sensitive
details or attributes associated with a specific record in the
released dataset, such as isolation attacks and information
amplification attacks To overcome this challenge, A group
of researchers [41] proposes privacy-preserving techniques
called differential privacy (DP). The main idea is that if two
datasets differ only by one record, then the same algorithm
should have similar results on these datasets. It provides
a solid mathematical privacy guarantee, which is formally
defined to be the following:

Fig. 1: Visualizing the differences between local (left) and
global (right) differential privacy.

Definition 1: Differential Privacy (DP)/Global Differ-
ential Privacy (GDP) A randomized mechanism K gives
ϵ-DP if for all datasets D and D′ differing on at most one
element, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ eϵPr[K(D′) ∈ S],

where S is the set of all possible outputs of K ; K(D) is the
privacy-preserving mechanism; and Pr is the probability
distribution of K(D). The mechanism K is guaranteed to
leak information less than or equal to the amount speci-
fied by the parameter. The probability distributions of the
randomized function K(D) and K(D′) overlap, making it
impossible to infer which of the two datasets D and D′ that
the query is executed on. ϵ is a relative measurement of the
allowance of information leakage and specifies how much
the probability distributions should overlap [42].

In DP, a data curator first collects the raw data and then
performs an analysis (i.e., global differential privacy (GDP)
defined in Def. 2.1). Local differential privacy (LDP) [43]
is a differential privacy in the local settings. In LDP, the
data is perturbed first before being sent to an aggregator for
analysis, which is the primary difference from GDP.

Definition 2: Local Differential Privacy (LDP) A ran-
domized mechanism K satisfies (ϵ, δ)-LDP where ϵ ≥ 0 and
(0 ≤ δ ≤ 1), if and only if any pair of input values v, v′ ∈ S
and S ⊆ Range(K),

Pr[K(v) ∈ S] ≤ eϵPr[K(v′) ∈ S],

where Range(K) denotes the set of all possible outputs
of the algorithm K . If δ = 0, the algorithm satisfies pure
(strict) local differential privacy (pure LDP). If δ > 0, the
algorithm satisfies approximate (relaxed) local differential
privacy (approximate LDP), namely, (ϵ, δ)-LDP [44].

In summary, LDP is defined for the situation when
individual data is privately protected before added to the
database while GDP is defined for the situation when data
is privately protected when it is queried from the database
(see Figure 1, where we visualize LDP on the left and GDP
is shown on the right). We note that both forms of DP are
needed due to varying real-world application needs and
settings.

In general, differential privacy can be achieved by
adding a reasonable amount of random noise into the out-
put results of the query function. The amount of noise will
ultimately affect the trade-off between privacy and utility.
Concretely, excessive noise will compromise the dataset
while meager noise hampers privacy guarantees. Specifi-
cally, the amount of noise can be determined by sensitivity.
Generally, there are two types of sensitivity, global sensi-
tivity and local sensitivity, where we will next provide the
associated definitions for both types of sensitivity as follows:

3

Fig. 2: Categorization of research problems in privacy and deep learning.

Definition 3: Global Sensitivity Given a query function
f that operates on a dataset D and produces the maximal
result difference for all datasets (D,D′) with at most one
different entry, Global Sensitivity is defined as:

GS (f,D) = max
D, D′

||f(D)− f(D′)||1

where ||.||1 is the L1-norm distance between datasets dif-
fering at most one element, max is the maximum result of
f(D)− f(D′) for all datasets D,D′.

Definition 4: Local Sensitivity Given a query function
f that operates on a dataset D, the local sensitivity is the
maximum difference that the change of one data point in D
can produce, defined as

LS (f,D) = max
D′

||f(D)− f(D′)||1

However, both GDP and LDP are highly vulnerable to
manipulation (i.e., an adversary could insert additional
data to undermine the output quality, i.e., poison attack).
Additionally, most real-world data are unstructured, and
the attacks and privacy challenges corresponding to such
data will be discussed next.

2.2 Privacy and Attacks on Deep Learning (DL)

Next, we discuss the vulnerabilities of deep learning,
present a categorization of privacy approaches with deep
learning, and summarize the most common privacy attacks
on deep learning.

2.2.1 Vulnerabilities of DL
By leveraging a copious amount of data, deep learning (DL)
algorithms are particularly impressive at decision-making,
knowledge extraction, recommendation, forecasting, and
many other crucial tasks. The input to DL models is the
algebraic form (e.g. scalars, vectors, matrices, tensors, etc.)
corresponding to raw images, videos, audios, text, graphs,
and other data forms, and the output of DL models can be
a class (classification), a value (regression), an embedding
(encoding), or a generated sample (generative). Unfortu-
nately, it is often possible to discern sensitive information
from the input data based on the outputs of the neural
network. During the training process, DL models encode
the sensitive information of the training data, consequently,
it is not surprising that a trained DL model could disclose
sensitive information [45]. The data is also vulnerable to
attack because it is typically not obfuscated but instead
stored in centralized repositories, which are subjected to
the risks of data breaches. This type of data breach has
been demonstrated in [45]. Under the context of private
data analysis, we hope to ensure that anything that can
be learned about a member of the database via a privacy-
preserving database should also be learnable without access

to the database [42]. For example, in a medical database of
smoking patients used for investigating if smoking causes
cancer, the algorithm infers sensitive information from data
even if the user’s PII has been protected.

2.2.2 Privacy Approaches for DL
There are a few ways to protect the privacy of the DL model;
Liu et al. [46] define them as follows (also seen in Figure 2):
(a) Privacy of DL model and data: provides privacy

protection to the DL model, training dataset, testing
dataset, and the output because the assumption is that
the whole DL system is the target for privacy protec-
tion.

(b) DL-enhanced privacy protection: provides privacy
protection of the data, and DL is a tool to help privacy
protection. DL algorithm identifies the sensitive infor-
mation and provides input to the user about privacy
concerns.

(c) DL-based privacy attack: DL is used as an attack tool
by the adversary without access to the original dataset
used for training. This is particularly important for
cases when the model is trained to detect some sensitive
information such as people’s identities and landmarks.

However, there are vulnerabilities in private DL, and in
the next part, we will explain the privacy attacks for each of
the categories mentioned earlier.

2.2.3 Privacy Attacks on DL
Recent attacks against DL models [47], [48] emphasize the
implicit risks and catalyze an urgent demand for privacy
preserving. Some of the work focused on efficient attack
strategies while others focused on defense mechanism. The
defense mechanism usually used differential privacy to
provide guarantee. Differentially private DL ensures that
the adversaries are incapable to infer any information about
a single record with high confidence from the released
DL models or output results [49]. However, in general,
the attacks are split into white-box and black-box based
on whether the model parameters of the target model are
available. In White-box attack, the attacker can access the
target model. So it knows the gradients, architecture, hyper-
parameters, and training data. In Black-box attack, the at-
tacker cannot access the target model but only has access
to query the target model. Based on the interactions, the
attackers then infer some information about the model, such
as possible datasets used for training.

There are many DL attack models proposed in the lit-
erature such as model extraction attack, model inversion
attack, attribute inference attack, and membership inference
attack. We explain them briefly below. More details about
the privacy attacks on graph neural networks are provided
in Section 3.

4

Model Extraction Attack (MEA): The goal of this at-
tack is to steal model parameters and hyper-parameters to
duplicate or mimic the functionality of the target model.
The adversary does not have any prior knowledge about
the DL model parameters or training data. Wang et al. [50]
design an attack to get the hyper-parameters from the DL
model. Tramer et al. [51] use the shadow model approach
to get information about the target model. Takemura et al.
[52] demonstrate the effectiveness of the MEA on complex
neural networks such as recurrent neural networks with or
without LSTM. Similarly, Zhang et al. [53] demonstrate the
MEA on pre-trained models.

Model Inversion Attack (MIvA): The goal of the model
inversion attack is to use the output of the model to extract
features that characterize one of the model’s classes [54].
Fredrikson et al. [55] develop an attack that exploits confi-
dence values revealed along with predictions. Hidano et al.
[56] extend the work of [55] and assume no knowledge of
the non-sensitive attributes. The focus of Parl et al. [57] is on
the defense side by using differential privacy.

Attribute Inference Attack (AIA): AIA aims to recon-
struct the missing attributes given partial information about
the data record and access to the machine learning model.
Jia et al. [58] develop a defense mechanism by adding noise
to the sensitive attributes. Gong et al. [59] develop a new
attack to infer sensitive attributes of social network users.

Membership Inference Attack (MIA): MIA aims to
infer whether a data sample is part of the data used in
training a model or not [28]. Shokri et al. [60] use a shadow
training technique to imitate the behavior of the target
model. The trained model is used to discover differences
in the target models on training and non-training inputs.
Salem et al. [61] use an unsupervised binary classification
instead of the shadow model. Truex et al. [62] study under
what circumstances the model might be more vulnerable
and find that collaborative learning exposes vulnerabilities
to membership inference risks when the adversary is a
participant. Jia et al. [63] focus on defense mechanisms by
adding noise to each confidence score vector predicted by
the target classifier.

2.3 Graphs and Graph-structured Data
Graphs are powerful for representing relational data, and
they are widely applied in different fields such as recom-
mender system [13], [4], chemistry [19], [18], social sci-
ence [64], [15], and e.t.c. Here we provide the graph nota-
tions that will be used throughout this paper. We denote
a graph G by (V, E ,X) with a set of nodes V = {vi}ni=1

where |V| = n, a set of edges E ⊆ V ×V among these nodes
that represent the connections between node pairs where
|E| = m, and the feature matrix X ∈ Rn×d where each row
xi ∈ Rd is a d-dimension feature of node vi. The topological
information of graph G is described by the adjacency matrix
A ∈ Rn×n where Aij = 1 if (vi, vj) ∈ E and Aij = 0
otherwise. Neighbors of a node vi are denoted as N (vi),
which consists of node vj that is connected with node vi
(i.e., N (vi) = {vj |(vi, vj) ∈ E}). For example, in social
networks, users are represented as nodes and their actions
(e.g. commenting, following) are modeled as the edges. In
recommendation, users and items are nodes and the user-
item interactions (e.g. purchasing) are the edges.

Fig. 3: The two-step message passing framework commonly
used in many GNNs: AGGREGATE and UPDATE.

2.4 Deep Learning on Graphs
Owing to the powerful representation ability of graphs and
the rapid development of deep learning, Graph Neural
Networks (GNN) have achieved impressive success in wide
applications, and their powerful performances in various
applications have been demonstrated [2], [65], [66], [17],
[67], [68]. In the following part, using the basic graph
notations and definitions from Section 2.3, we first introduce
the main idea of GNNs via the neural message-passing
mechanism. Then, we provide a brief introduction to some
of the most popular GNNs.

2.4.1 Neural Message Passing GNNs
The main idea of GNNs is to leverage the message pass-
ing mechanism, which iteratively collects information from
neighbors and integrates the aggregated message with the
current node representation. This iteration is described by
two stage: AGGREGATE and UPDATE (illustrated in Figure
3). In one layer, these two steps iterate for all nodes in
graph G. Stacking layers contributes to building powerful
GNNs that capture higher-order relationships. We first give
the message passing formula for a target node u in the kth

layer in terms of AGGREGATE and UPDATE in Eq. (1) and
Eq. (2). Then we will introduce the details of these two steps.
More detailed explanations of how they are designed in
different models are in Section 2.4.2.

m
(k)
N (u) = AGGREGATE({h(k)

v ,∀v ∈ N (u)}) (1)

h(k+1)
v = UPDATE(h(k)

v ,m
(k)
N (u)) (2)

AGGREGATE: Aggregation means gathering informa-
tion from neighbors. At kth-iteration of the GNN, the AG-
GREGATE function takes the embeddings of the target node
u’s neighbors N (u) and generates a new representation
m

(k)
N (u) based on the collected embeddings. Fundamentally,

the AGGREGATE operator is a set function where the input
is a set of neighbor’s embeddings and the output is a single
vector. There are many choices for this aggregate operator,
such as degree-based graph convolution (e.g., GCN [6]
and Graphsage [5]) or using attention-based strategies (e.g.,
GAT [69]) to design an AGGREGATE function.

UPDATE: Update refreshes the representation of a node
u with its own feature information and the aggregated
messages from neighbors m

(k)
N (u). At the kth layer of the

GNN, the update function combines the new representation
m

(k)
N (u) and node u’s embedding h

(k)
u to obtain the new user

embedding h
(k+1)
u . A typical UPDATE operator involves a

5

linear combination of the node’s embedding and the aggre-
gated message along with a non-linear activation function
(e.g., sigmoid, Tanh, ReLU) after the linear transformation.
Other variants have been proposed to further improve the
performance, such as concatenation methods [5] and skip-
connection methods [70].

2.4.2 Typical GNNs
Here are several widely-used GNNs along with their cor-
responding message-passing functions. The AGGREGATE
function is denoted by f

(k)
A through which we obtain the m

representation, and UPDATE function is denoted by f
(k)
U .

σ denotes the activation function, and W and a are train-
able parameters with their detailed dimensions illustrated
later when detailing the models. The dimensions of node
representations before/after the linear transformation are
denoted as d/d′, respectively.

GCN [6]. The graph convolutional network (GCN) is one
of the most popular GNNs with aggregation and update
functions as follows:

f
(k)
A ({h(k−1)

v |v ∈ N (u)}) =
∑

v∈N (u)

h
(k−1)
v√

deg(u)deg(v)

f
(k)
U ({h(k−1)

u ,m(k)
u }) = σ(W(k)m(k)

u)

where the aggregation is normalized by degree (i.e., deg(·))
from both source and target nodes and Wk ∈ Rd′×d is the
weight of the linear transformation layer.

GraphSAGE [5]. GCN models are inherently transduc-
tive. They cannot efficiently generalize to unseen nodes
or different graphs. GraphSAGE is proposed to solve this
issue in an inductive manner, which samples a fixed-size
neighborhood of each node and leverages node attribute
information to efficiently generate representations on previ-
ously unseen data. ⊕ operation concatenates the embedding
of the target node and aggregated message, and Wk has
dimension of Rd′×2d due to the concatenate operation.

f
(k)
A ({h(k−1)

v |v ∈ N (u)}) = 1

deg(u)

∑
v∈N (u)

h(k−1)
v

f
(k)
U ({h(k−1)

u ,m(k)
u }) = σ(W(k)[h(k−1)

u ⊕m(k)
u])

GAT [69]. Graph Attention Networks (GAT) introduce
attention mechanism to compute the weight between edge
euv (denoted as αuv), which indicates that different neigh-
bors will contribute differently in the aggregation process
based on the learned node representations where Wk ∈
Rd′×d and a ∈ R2d′×1.

α(k)
uv =

exp (σ(a(T)[W(k)h
(k−1)
u ⊕W(k)h

(k−1)
v])))∑

v′∈N (u) exp (σ(a
(T)[W(k)h

(k−1)
u ⊕W(k)h

(k−1)

v′]))

f
(k)
A ({h(k−1)

v |v ∈ N (u)}) =
∑

v∈N (u)

α(k)
uv h

(k−1)
v

f
(k)
U ({h(k−1)

u ,m(k)
u }) = σ(W(k)m(k)

u)

We encourage readers who seek a more comprehensive
introduction to deep learning on graphs to explore dedi-
cated surveys [2], [71], tutorials [3], [4] and books [4], [1].

2.5 Motivation
Although data privacy has been well-investigated in the
general DL domain, it is rather critical to consider privacy
for graph data and models since (1) graph data and models
are prevalent in real-world applications; (2) the data and
models are vulnerable to attacks, it is less explored than
other forms of data (e.g., tabular); (3) extending directly
from regular data to graph data without any domain mod-
ification is challenging due to the complex graph-based
structure. Therefore, discussing privacy attacks and preser-
vation techniques that are specific to graphs becomes a
necessity [72].

2.5.1 Vulnerabilities of Graph Data and GNN Models
Compared to regular tabular, image, and text data, graph
data has complex connections and potential edge features,
both of which could be considered as potential objects to
attack [73], [74]. For example, while most other forms of
data are independent and identically distributed (i.i.d.), the
nodes within a graph are inherently connected. Further-
more, many real-world networks have high homophily [75]
where connected nodes are prone to share similar features.
Thus, this can be exploited to infer the node information
based on its neighborhood and cause the risk of informa-
tion leakage, which poses brand new challenges to privacy
preservation. However, we note that even for graphs not
exhibiting high homophily, GNNs have shown to still per-
form well with lower levels of homophily [76], [77], which
suggests they are also vulnerable to privacy attacks.

Furthermore, the complex connections among nodes
make it hard for data partitioning and thus bring huge
challenges for distributed training. Therefore, GNNs are
typically trained in a centralized way where the model
and data are stored in one place, which increases the risk
of information leakage and might be impossible in many
real-world settings. While GNNs have shown significant
improvement in various applications, the unique message-
passing process might exacerbate the sensitive leakage as
each node now encodes the information from its neighbors.
It means that to protect one node, not only that specific node
should be protected as in i.i.d data, but the substructures
surrounding that node should also be protected.

2.5.2 Related Surveys and Differences
Recently, several surveys [78], [79], [80], [81] have been
conducted on the trustworthiness in GNNs, including the
reliability, explainability, fairness, privacy, and transparency
aspects, showing the common interest and concern on trust-
worthiness with our interests here. On one hand, within
the range of trustworthiness, although surveys related to
explainability [82], and fairness [83] of GNNs exist, few
of them provide a comprehensive and focused discussion
on privacy for GNNs. On the other hand, although there
are privacy surveys in ML/DL [84], [85], [47] and social
networks [86], [87], privacy specific to graph data and graph
models has not been comprehensively discussed yet. This
motivates us to present a systematic and in-depth review
of the existing attack models and privacy-preserving tech-
niques on GNNs, which could benefit the research com-
munity in developing privacy-preserving GNNs immune to
privacy attacks.

6

3 PRIVACY ATTACKS ON GNNS

Privacy attack is a popular and well-developed topic in
various fields such as social network analysis, healthcare,
finance, system, etc. [88], [89], [90]. During recent years,
the surge of machine learning has provided powerful tools
to solve many practical problems. However, data-driven
approaches also threaten users’ privacy due to the asso-
ciated risks of data leakage and inference [85]. Conse-
quently, a substantial amount of work has been devoted
to investigate the vulnerabilities of ML models and the
risks of privacy leakage [47]. A branch of privacy research
is to develop privacy attack models, which has received
much attention during the past few years. However, attack
models with respect to GNNs have only been explored
very recently because GNN techniques are relatively new
compared with CNN/transformers in image/natural lan-
guage processing(NLP) domains, and the irregular graph
structure poses unique challenges to transfer existing attack
techniques that are well-established in other domains. In
this section, we summarize papers that have developed
attack models specifically targeting GNNs.

We classify the privacy attack models on GNN into
four categories (which are visualized in Figure 4): a) model
extraction attack (MEA), b) graph structure reconstruction
(GSR), c) attribute inference attack (AIA), and d) member-
ship inference attack (MIA).

In MEA, the GNNs model is often directly ex-
tracted/inferred with the aid of a surrogate model. Con-
cretely, the surrogate model is trained so that it can output
predictions similar to the ground-truth values that would be
generated by the target model given the same input. In GSR
attack, information related to graph structure such as topol-
ogy and connectivity is inferred by the attackers. Compared
to MEA, GSR aims to obtain more information about the
model rather than simply mimicking the performance. GSR
is similar to the model inversion attack mentioned in the
previous section except it is for graph specifically. Note that
GSR is equivalent to graph information reconstruction (GIR)
that is used in the literature. We rename it to GSR because
this attack focuses more on the reconstruction of graph
structural information. In AIA, concrete features of node
(e.g. age, salary) are obtained by the attackers. In MIA, the
attackers aim to determine whether or not a node belongs
to the training set. Another way to categorize the attack
models is based on the accessibility of information, and the
models can be divided into white-box attacks and black-box
attacks respectively. In the white-box setting, adversaries are
assumed to be able to access rich information of GNNs such
as their architecture, parameters, embeddings, and outputs.
By contrast, in black-box settings, adversaries have limited
information about the target model, if not none.

3.1 Model Extraction Attack
MEA often occurs in models based on multi-layer percep-
tron (MLP) and convolutional neural networks (CNNs).
Recently, a trend of increasing popularity in researching
MEA on GNN has been observed. Under the MEA scheme,
the attackers typically have limited information about the
GNN model (i.e., black-box). During a MEA, the attackers
first adopt a model (e.g., GNN) similar to the victim GNN

Fig. 4: Illustrations of the four categories of privacy attack
models on graphs: a) Model extraction attacks (MEA); b)
Graph structure reconstruction (GSR); c) Attribute inference
attacks (AIA); and d) Membership inference attacks (MIA).

model. Subsequently, the adopted model is tuned so that it
has a similar performance as the target model in terms of
criteria such as accuracy and decision boundary. To accom-
plish this, the attackers first generate queries to the victim
model, then collect the outputs from the model API, and
subsequently feed the same queries to the extracted model,
and finally tune the parameters of the adopted model so
that it can have similar outputs as does the victim model. As
the performance of the two models converges, the adopted
model can be considered as an extracted model of the victim
model. The mathematical definition of MEA to GNN-based
approach is the following: a GNN model can be expressed
as f operated on a graph G. The goal of MEA is to obtain
an extracted model f ′ such that f ′(G) ≈ f(G). Note that
due to the connectivity of the data samples in a graph,
MEA to GNN will be facilitated if additional information
about the graph structure is available. This is one distinct
difference from the MEAs to CNN-based or MLP-based
models, in which the data samples are not connected, unlike
the connected nodes in a graph.

An early work studying MEA towards GNN is done
by [21], where the extracted model is able to produce the
output with an 80% similarity to that of the victim model
(also called fidelity) on Cora and Pubmed datasets, with the
limited access to only a subgraph. A recent comprehensive
investigation of MEA towards GNNs is done by [20]. The
authors present seven possible scenarios under which the
attacker possesses a different amount of prior information
(e.g., node attributes and topology) for the attack. Based on
these scenarios, they determine seven categories of attack.
After experimenting with their attack on multiple real-
world datasets, they claim that their extracted model can
reach a fidelity of as high as 90%. Similarly, other recent
work has also focused on the MEA on inductive GNNs [91].

7

3.2 Graph Structure Reconstruction

In this subsection, we will discuss recent progress about
GSR specifically targeting GNN. In a GSR attack on GNN,
the attackers seek to steal the private information of the
input graph, mainly pertinent to the graph structure.

Duddu et al. [25] conduct a GSR on GNN model to
extract the graph Gtarget using the publicly accessible node
embedding Ψ(v),∀v ∈ Gtarget . The process has 2 phases, of
which the first one trains a graph-encoder-decoder structure
using the auxiliary graph Gauxiliary of which nodes follow
the data distribution of the target graph Gtarget, and the
second phase leverages the publicly accessible target node
embedding and the trained decoder to estimate the target
adjacency matrix Atarget, which captures the graph connec-
tivity and edge distribution. They demonstrate that their
proposed GSR reaches a very high precision (above 0.7) for
estimating the target graph using Cora, Citeer, and Pubmed.
Zhang et al. [22] look at GSR for edge reconstruction and
structural reconstruction, where they call their attack model
Graph Module Inversion Attack (GraphMI). In the white-
box attack setting, GraphMI consists of a projected gradi-
ent module, a graph auto-encoder module, and a random
sampling module. The projected gradient module aims to
extract graph topology with the output labels of the target
model and auxiliary knowledge, and is designed to tackle
discrete optimization problems via convex relaxation while
preserving graph sparsity and feature smoothness. Then,
the graph auto-encoder module takes node attributes, graph
topology, and target model parameters into consideration
for graph reconstruction. Specifically, the projected gradient
module solves the following optimization problem:

argmin
a∈[0,1]n

LGNN + αLs + β∥a∥2

where a ∈ [0, 1]
n
(n = N(N − 1)/2) is a continuous-valued

adjacency vector, which is transformed from the adjacency
matrix A ∈ {0, 1}N×N so that the original combinatorial
optimization problem can be solved through the projected
gradient descent method, LGNN denotes the loss of the
target model aiming to make the reconstructed adjacency
more similar to the original one, Ls is the term to ensure the
feature smoothness in the optimized graph, the last term is
to encourage the sparsity of graph structure, and α, β are
constant parameters. One can refer to [92] for details of the
model. The graph auto-encoder module is composed of an
encoder and a decoder. The encoder is directly transferred
from the target model f(x; θ∗) with partial parameters
(i.e., excluding the readout layer). After the optimization
of projected gradient module, the encoder encodes nodes to
node embeddings by using topology information and node
attributes x. Then, the decoder will reconstruct the graph
adjacency based on the node embeddings. The random sam-
pling module is designed to recover the binary adjacency
matrix.

In [92], the authors claim that GraphMI is effective
towards inferring edges after evaluating it on three GNNs
(i.e., GCN [6], GAT [69], GraphSAGE [5]). Further, based
on their analysis of the relation between the edge influence
and the model inversion risk, they conjectured that the ease
of reconstruction is positively correlated with the edges’

influence. In addition, the authors incorporate gradient esti-
mation and reinforcement learning into GraphMI to render
it capable for black-box attack.

He et al. [23] first propose a threat model called link
stealing attack aiming to infer the existence of links among
nodes in target datasets. The authors systematically char-
acterize the background knowledge (i.e., accessibility of
knowledge) of an adversary through three dimensions,
which are attributes of nodes in the target datasets X,
partial graph structure in target datasets Ā, and a shadow
dataset DShadow, respectively. Based on different accessibil-
ity settings (i.e., have access or not) of the knowledge in
three dimensions, they develop in total 8 attack mechanisms
for all 8 possible settings. Basically, if an adversary has
no knowledge or only the target node attributes X, the
attack model is conducted in an unsupervised way, which
is mainly based on the intuition that a node pair would
share more similar attributes or closer posteriors queried
from the target model when linked. If an adversary has
access to the partial graph structure in target datasets Ā or a
shadow dataset DShadow, the attack model can be trained in
a supervised way. For partial graph Ā, the adversary takes
the links as the ground truth label to train an attack model.
Also, an adversary could train an attack model based on
a shadow dataset DShadow so that the trained model can
be later transferred to infer links in the target dataset. The
intuition is that the trained model could obtain the ability to
capture the similarity between two nodes’ posteriors, which
can be further transferred to different datasets (e.g., target
model). One can refer to [23] for more details about each
attack model. Plenty of experimental results demonstrate
the effectiveness of the proposed attack models. More im-
portantly, the results indicate that the output predictions of
GNNs preserve rich information about the structure of a
graph that is used to train the model. Wu et al. [24] also
focus on edge privacy and aim to recover private edges
from GNNs through influence analysis. [93] demonstrates
that additional knowledge of post-hoc feature explanations
substantially enhances the structural attacks.

3.3 Attribute Inference Attack

AIA aims to infer the properties of a target training dataset.
For graph-based data, the properties are usually related to
nodes and edges, and these properties could be sensitive
features (e.g. gender and age information of a user node
in social network analysis [94], chemical bonds information
in a molecular graph). Note that the difference between
GSR and AIA can be subtle. The former one aims to re-
produce the graph, while the later one focuses on stealing
the concrete features of the dataset. Compared to many
other adversarial attacks, AIA is often considered to be
more malicious due to its capability to directly predict the
sensitive features of a target user. In addition, an even more
serious derivative of AIA, data reconstruction attack, could
occur when attackers try to infer a subset of the training
data, rather than a single one. In AIA, embedding is often
used to predict the sensitive features because of their close
relationship.

Duddu et al. [25] investigate AIA on graphs by inferring
the gender and location of certain users of the targeted

8

graphs composed with Facebook and LastFM. In their study,
a fraction of users publicly disclose their gender and lo-
cation, and a sub-graph Gaux can be constructed based
on these users. Here, given (Ψ(v), sv)∀v ∈ Gaux, where
Ψ(v) is node embedding and sv is the disclosed sensitive
feature, a supervised attack classifier model fattack can be
trained. Based on the trained model and the available node
embeddings of the target graphs, their sensitive features can
be estimated via fattack (Ψ (v′)) where v′ ∈ Gtarget. Their AIA
showed high performance.

Although less common, edges could also be related to or
contain sensitive information. For example, in a drug-target
interaction graph, a link could contain sensitive information
such as the interaction pattern and affinity between certain
drug and target. Thus, AIA could also be designed specifi-
cally against the edges.

3.4 Membership Inference Attack

Membership is to describe whether a data sample belongs
to the training dataset or not [95]. In GNNs, the goal of
a MIA can be at the node level, edge level, and graph
level [25], [26], [27], [96], [23], [97]. Node-level MIA is to
infer whether a node exists in the original graph or not. For
instance, attackers could be interested in whether or not a
person is in a certain social community by using an MIA
on that social network; subsequently, the attackers could
further modify/steal the private information of the targeted
user. Edge-level MIA aims to infer the membership of links.
Graph-level MIA is to infer whether a graph is used during
the training which is often used for graph classification
tasks. Typical methods for MIA include using shallow
models, node embedding, and graph embedding [98],
[99]. MIA is a binary classification problem, and typical
metrics for evaluating MIA include the inference accuracy,
precision (i.e., the percentage of true positive), ROC-AUC
score enabling the visualization of true positive rate versus
false positive rate, etc.

Node-level MIA. In [26], the authors perform MIA with
the help of a shadow model (i.e., a simplified model trained
to approximate the target model), where they build the
attack model in a supervised way with data generated from
the trained shadow model, under the assumption that they
can construct the shadow model using the same neural ar-
chitecture as the target model. They train the shadow model
with data from the same distribution as the training set of
the target model. In order to better simulate the behaviors of
the target model, the output probabilities queried from the
target model are considered as the ground truth during the
training of the shadow model. The attack model is designed
as a binary classification model, which maps the output
prediction confidence of a model to the membership of
the corresponding input nodes. To train the attack model
through a supervised way, the authors generate the dataset
by using the trained shadow model to predict on the entire
dataset DShadow (both member and non-member nodes)
and obtain the corresponding output confidence. Finally,
they can infer the membership with the trained attack model
once they have the output of a node queried from target
models. In addition, they also try another way to obtain

the shadow model. Instead of querying the target model
for confidence, they use ground truth labels of the original
nodes to train the shadow model. Interestingly, it is found
that there is no significant difference in the attack success
rate. The authors also claim that it is unnecessary for the
shadow model to have exactly the same architecture as does
the target model after they realize that a standard graph
convolutional network would also gain good results in MIA.

In [25], the authors develop the MIA method under
black-box and white-box settings respectively. In the black-
box setting, an adversary is assumed to have only access
to the output probabilities of the target model when given
a node. Thus, under this scenario, the authors consider
exploiting the statistical difference between the prediction
confidence on training (i.e.) member and non-member data).
Specifically, they demonstrate that if a node belongs to the
training data, the output probability queried from the target
model would be more confident (i.e., has higher values)
on the corresponding label. While for a non-member node,
the output probability distribution is supposed to be less
confident and more uniform. Then, based on this setting, the
authors consider two attack methods (i.e. shadow attack and
confidence attack) respectively. The shadow model shares
the similar idea as does the one in [26], which builds the
attack model through a supervised way with the training
data generated from the trained shadow model. By contrast,
a confidence attack performs inference in an unsupervised
setting. Based on the fact that nodes with a higher prediction
confidence are more likely to be members, an adversary
could decide memberships according to whether the high-
est confidence of a node’s prediction is above a certain
threshold which can be set or learned. The authors also
experimentally verify that the confidence attack performs
much better than does shadow attack under the black-box
setting. Then, in the white-box setting, an adversary has the
access to the intermediate output of the target model (i.e.,
node embedding in [25]). Here, the authors propose an un-
supervised method that maps the intermediate embedding
to a single membership value. Specifically, they train an
encoder-decoder model. The encoder encodes the interme-
diate embeddings with a single membership value, which is
then passed to the decoder to reconstruct the embeddings.
Afterwards, they use clustering method (e.g., K-Means)
to distinguish the obtained single membership value into
the clusters (i.e., members and non-members). The authors
conducted their analysis using a wide range of GNNs and
network-embedding methods (e.g. GCN, GraphSAGE, GAT,
Topological Adaptive GCN, DeepWalk, Node2Vec) and thus
show the generalizability of their result.

He et al. [27] propose a MIA model also based
on training a shadow model. Instead of first querying
from the target model for the output probabilities of
nodes in DShadow as [26], the authors directly train the
shadow model with the dataset DShadow as well as the
corresponding features and labels, which are derived from
the same distribution as the training set DTarget of the
target. Similar to [26], the attack model is trained through a
supervised way with membership information in DShadow

and the queried posteriors of nodes from the trained
shadow model. Differently, depending on the adversary’s
knowledge of node topology, the authors develop three

9

query methods, which are 0-hop query, 2-hop query, and
combined query, respectively. Also, there are three different
attack models that are trained with datasets corresponding
to three query methods respectively. The experimental
results demonstrate that the combined attack outperforms
0-hop attack and 2-hop attack, since it takes advantages
of the later two methods. Moreover, they experimentally
show that the assumption of the identical distributions of
DShadow and DTarget, and the same architecture of the
shadow model and target model can both be relaxed, which
is consistent with the results in [26].

Edge-level MIA. Similar to the node, which contains
sensitive information, the connections also carry valuable
information and thus become a target of the attackers.
Edge-level MIA aims to determine whether there is a link
between two nodes in the training graph [23].

Graph-level MIA. In addition to the node and edge
level, researchers have also investigated graph-level mem-
bership inference [97], [100], [101] where the task is to infer
whether a graph/sub-graph is used in the training set. Wu
et al. [97] aim to infer whether a graph sample has been
used for training and design two types of attacks includ-
ing training-based attacks and threshold-based attacks from
different adversarial capabilities. Zhang et al. [100] infer the
basic graph properties and the membership of a sub-graph
based on graph embedding.

4 PRIVACY PRESERVATION TECHNIQUES ON GNNS

After discussing possible attacks toward GNNs model,
we now shift our attention to preservation methods that
can effectively protect against these attacks. In the fol-
lowing subsections, we will discuss latent factor disentan-
gling, adversarial training, differential privacy approach,
and federated learning. Latent factor disentangling aims
to remove the sensitive information from the embedding
while minimizing the loss of meaningful information for
the downstream tasks; adversarial training aims to render a
model resistant to privacy attacks through careful training;
differential privacy approaches incorporate random noise
into data samples or intermediate model variables to protect
sensitive information during queries; and federated learning
enables collaboration among users with private datasets
without revealing them. Table 1 enumerates the techniques
associated with these four categories.

4.1 Latent Factor Disentangling
Graph/node embedding is able to preserve sensitive and
non-sensitive information of the original graph. From the
perspective of representational learning, latent factor disen-
tangling aims to disentangle the sensitive information from
the embedding while ensuring the utility of the disentan-
gled embedding for downstream tasks. In this way, it would
be difficult for an adversary to implement privacy attacks
with limited/no latent sensitive information. Various meth-
ods have been proposed to achieve this goal [29], [30], [31].

Li et al. [29] propose a graph embedding model to dis-
entangle sensitive information from the embedding while
preserving the structural information and data utility. The

TABLE 1: Privacy preservation techniques that have either
been utilized or have the potential to be employed on
GNNs. Public code links to these methods are also provided
(if available). All the methods are collected here.

Category Method Public Code

Latent Factor Disentangling

APGE [29] Link
Wang et al. [30] -
DP-GCN [31] Link
DGCF [102] Link

Adversarial Training

NetFense [32] Link
Tian et al. [33] -
SecGNN [103] Link

FRFC [104] -
GAL [105] Link

Wang et al. [106] -
AttrOBF [107] -

Differential Privacy

LPGNN [34] Link
GAP [35] Link

Mueller et al. [108] -
DP-Adam [109] Link
PrivGNN [110] -
DP-GNN [111] Link
Solitude [112] -
GERAI [113] -

Federated Learning

Fedgraphnn [114] Link
FedGL [115] -

FedGNN [116] -
FedGCN [117] Link
VFGNN [118] -
SGNN [119] -

FedVGCN [120] -
D-FedGNN [121] -
SpreadGNN [122] Link
FedPerGNN [123] Link

FLIT(+) [124] Link
GraFeHty [125] -

model incorporates two mechanisms in a complementary
way, both of which can separately protect the sensitive
information. The first mechanism is based on the graph
autoencoder (GAE) model [126], which is able to process
graph-structured data, or a supervised Adversarial Autoen-
coder (AAE) model [127], which augments the decoder with
the one-hot encoding of the label so that the final embedding
would contain label-invariant information. According to
this, the authors use GCN as encoder, and incorporate pri-
vacy labels to the decoder to disentangle sensitive informa-
tion from the final embedding. The proposed autoencoder
achieves graph reconstruction with the output containing
both link prediction and the prediction of non-sensitive
node attributes. Note there also has a discriminator for
updating the encoder. The loss function can be described
as Lrecon = Llink +Lattr where Llink and Lattr denote loss
for link prediction and the prediction of non-sensitive node
attributes respectively. The discriminator has a separate loss
function Ldc.

Instead of disentangling privacy labels as decoder input,
the second mechanism achieves the similar effect by incor-
porating an attacker model (i.e., a softmax classifier) that
aims to predict sensitive node attributes to an obfuscator
(i.e. similar to the autoencoder model of the first mechanism
while without incorporating privacy labels). The goal of
the second mechanism is to reduce the performance of
the attacker while preserving the graph structure and non-
sensitive data utility. Given the loss function of the attacker
Lattack, the loss function of the obfuscator will be Lobf =
Lrecon − λLattack where λ is a trade-off hyper-parameter.

https://github.com/NDS-VU/awesome-gnn-privacy
https://github.com/KaiyangLi1992/Privacy-Preserving-Social-Network-Embedding
https://github.com/HuiHu1/Privacy-Preserving-Graph-Convolutional-Network
https://github.com/xiangwang1223/disentangled_graph_collaborative_filtering
https://github.com/ICHproject/NetFense/
https://github.com/songleiW/SecGNN
https://github.com/liaopeiyuan/GAL
https://github.com/sisaman/LPGNN
https://github.com/sisaman/GAP
https://github.com/google-research/google-research/tree/master/differentially_ private_gnns
https://github.com/tamaramueller/DP-GNNs
https://github.com/FedML-AI/FedML/tree/master/python/app/fedgraphnn
https://github.com/yh-yao/FedGCN
https://github.com/FedML-AI/SpreadGNN
https://github.com/wuch15/FedPerGNN
https://github.com/ur-whitelab/fedchem

10

Finally, the authors use two mechanisms together to protect
the privacy in both input and output of the decoder in a
complementary way.

Wang et al. [30] design a framework based on encoder-
decoder architecture to learn graph representations that
encode sufficient information for downstream tasks while
disentangling the learned representation from privacy fea-
tures. The key component is a conditional variational graph
autoencoder (CVGAE), which captures the relationship be-
tween the learned embeddings and the sensitive features.
They add a penalty loss into the original reconstruction
objective to encourage the CVGAE to minimize the mean
Gaussian distribution differences so that the privacy leakage
will be punished. Under this framework, they consider two
specific scenarios where the graph structure is available and
unavailable to the adversary, respectively.

In some graph datasets, the same attribute could be pri-
vate for some nodes, while non-private for the other nodes.
One example is social network composed with people of
different genders, where the age of people of certain genders
(e.g. female) could be private while the age of the people of
the rest of genders (e.g. male) could be public. Due to graph
homophily (i.e. connected nodes are similar), showing the
public information about some users (e.g. ages of men)
could lead to inference about some private information (e.g.
ages of women who are connected to the men on the social
network). To handle this issue, Hu et al. [31] propose a
privacy-preserving GCN model named DP-GCN that can
conceal the value of the private sensitive information that
has been exposed by public users in the same network. DP-
GCN has a Disentangled Representation Learning Module
(DRL) and a Node Classification Module (NCL). DRL sep-
arates the non-sensitive attributes into sensitive and non-
sensitive latent representations to be orthogonal to each
other. NCL trains the GCN to determine the class of the
nodes with non-sensitive latent representations. The authors
experimentally showed that the attributes disentangling of
the public users (e.g. men with disclosed ages) can help
protect the privacy of the private users (e.g. women with
undisclosed ages).

Besides the above influential works, researchers have
also worked in this direction [102], introducing innovations
that improve performance and inspire further research in
privacy-preserving.

4.2 Adversarial Training

An intuitive perspective to defend against privacy attacks
is to directly reduce the performance of specified attacks.
Accordingly, one can train models with the objective of
minimizing the performance of specified privacy attacks
(i.e., privacy protection) and maintaining the performance
of downstream tasks (i.e., utility). We refer to this kind of ap-
proach as adversarial training. Actually, the aforementioned
model in [29] can also be categorized to adversarial training.
Specifically, the updating process contains loss functions of
the discriminator Ldc and the attacker Lattack, which will
make the model robust to the attack in an adversarial way.

Hsieh et al. [32] propose an adversarial defense model
against GNN-based privacy attacks named NetFense, which
is able to reduce the prediction performance of the attacker

and maintain the data and model utility (i.e., maintain the
performance on downstream tasks). Different from [29], this
paper presents a graph perturbation-based approach aiming
to make perturbation to the original graph (i.e., changing the
adjacency matrix, A) to fool the attacker while maintaining
utility for the downstream task (i.e., node classification). To
achieve this, the model comprises three phases, which are
candidate selection, influence with GNNs, and combinato-
rial optimization, respectively. The first phase aims to find
out a set of candidate edges for perturbation. Specifically,
it uses the change of Personalized PageRank (PPR) score to
measure the noticeability of the perturbation. To keep data
utility, it selects candidate edge perturbation with minimal
noticeability. Then, the second and third phases ensure
model performance and privacy preservation. Compared
to [29], which alternately updates the model and attacker,
NetFense does not update models in an adversarial way.
Instead, given the pre-trained classification model and at-
tack model, NetFense modifies the input graph structure to
obtain a perturbed graph that can protect privacy. Another
difference is that Netfense assumes privacy labels are bi-
nary. Thus, it aims to reduce the prediction accuracy of the
attacker to 0.5 rather than just maximizing the loss function
of the attacker.

Tian et al. [33] adopt adversarial training for privacy
preservation for social network analysis. Concretely, their
model has two stages, of which the former one is based on
an ∈-k anonymization method, and the later one is based on
an adversarial training mechanism. The adversarial train-
ing can help GNN extract useful information from the
anonymous social network data after the first step. In other
words, the main purpose of adding the adversarial training
is to render GNNs resistant to the disturbance from ∈-k
anonymization so that the privacy can be enhanced and the
model performance is minimally compromised. The authors
also showed the effectiveness of their approach through
experiments related to classification, link prediction, and
graph clustering using multiple real-world datasets. Further,
the authors showed the flexibility and efficiency of their
model in the data collection/training phases.

Apart from the aforementioned and discussed influential
studies in this area, additional researchers have also ex-
plored this field [104], [105], [106], [107], introducing various
innovations that have led to increased performance and
inspiring even more future work.

4.3 Differential Privacy

As discussed in section 2.2, differential privacy has been
successfully applied to various machine learning models for
privacy protection. However, unlike other machine learning
models wherein the data points are usually assumed to
be independent, the data samples of GNNs are nodes of
graphs, which are connected by edges, making the methods
developed for other machine learning models difficult to
be directly applied to GNNs. Recently, increasing works de-
velop differentially private (DP) approaches to solve privacy
preserving problem particularly for GNNs. The key point
of DP approaches is to add random noise to data samples
or intermediate model variables so that when querying for
the sensitive information, an adversary would only obtain

11

perturbed data, which is useless for attacks. Obviously, data
with too much noise will also degrade the performance
of GNNs, making it a major issue to find a good balance
between data privacy and utility.

Sajadmanesh et al. [34] present a locally private GNN
(LPGNN) using the local differential privacy (LDP) tech-
nique to protect data privacy. They add noise to both node
features and labels to ensure privacy and design denoising
mechanisms so that LPGNN is able to be trained with
the perturbed private data. More specifically, to add noise
on node features, they propose an LDP encoder and an
unbiased rectifier, where the former is to inject noise (i.e.,
X → X∗), and the latter converts the encoded vector X∗

to an unbiased perturbed vector X
′

(i.e., E[X
′
] = X).

Then, to denoise the perturbed node features, they append
a multi-hop aggregation layer to the GNN, called KProp,
which is able to average out the injected noise. To perturb
node labels, the authors use the generalized randomized
response mechanism [128]. LPGNN denoises the node labels
with another mechanism: label denoising with propagation
(called Drop in the paper), which also utilizes KProp. The
Drop recovers the true labels of nodes based on the fact
that nodes with similar labels are more likely to connect
with each other. Experimental results show an appropriate
privacy-utility trade-off of LPGNN. More info about DP and
LDP is presented in subsection 2.1.

Sajadmanesh et al. [35] develop a DP-GNN by adding
stochastic noise to the aggregator of GNN such that the
existence of a single edge (i.e., edge-level privacy) or a
single node and its adjacent edges (i.e., node-level privacy)
becomes statistically obscure. Their model consists of three
different modules, including an encoder module, an aggre-
gation module, and a classification module. In the encoder
module, the private node embedding is learned indepen-
dent of the edge information. In the aggregation module,
they use the graph structure to determine the noisy node
embedding after aggregation. In the classification module,
a neural network is trained on the private aggregations
for node classification without further querying the graph
edges. The authors also point out that their model is ad-
vantageous to the earlier approaches as it benefits from the
multi-hop neighborhood aggregations, and both the edge-
level and node-level DP is guaranteed during both the
training and the inference stages.

Differentially private stochastic gradient descent (DP-
SGD) is a popular algorithm that greatly advances the
private deep learning. It can guarantee privacy to all data
points in the dataset. Yet, modifications must be made for
it to be applicable for graph structured data. This chal-
lenge is partially overcame in the work by [108], where
the authors focus on the task of graph-level classification.
Furthermore, in this work they attempt to better understand
the differences between SGD and DP-SGD through the
lens of GNNExplainer[129]. They find training with DP-
SGD learns similar models, but as requiring tighter privacy
guarantees (which require higher levels of noise) there is a
decline in the similarity to the non-privately trained mod-
els. Another investigation proposes DP-Adam [109] (i.e., a
differentially private Adam-based optimization for GNNs),
which achieves similar performance as [108].

In addition to the previously mentioned and extensively

examined influential works in this field, researchers have
pursued similar avenues [110], [111], [112], [113], present-
ing diverse advancements that have resulted in enhanced
performance and further stimulating this direction.

4.4 Federated Learning

Federated Learning (FL) [130], [131], [132], [133] is a promis-
ing paradigm to protect data privacy which enables clients
(e.g., companies) to train models collaboratively without
revealing the raw data. Such a need is prevalent in the
real world. For example, several hospitals want to train a
model jointly, but their data is not allowed to be shared
due to patient privacy concerns. Under this circumstance,
FL comes to the rescue via collectively learning models
with decentralized data in a privacy-preserving manner. The
general framework [134] is to compute local updates from
each client, update the global parameters from a central
server, and then distribute the update to local clients. In this
way, the raw data are only accessible on the local server,
preventing information from leakage.

Inspired by the confluence of the development of
federated learning and the popularity of graph learning,
the interest in the intersection of these two fields, federated
graph learning (FGL), has grown rapidly in recent
years [37]. Zhang et al. [36] summarize FGL models
into three categories based on how the graph data is
distributed, namely Inter-graph FL, Intra-graph FL, and
Graph-structured FL.

Inter-graph FL. Inter-graph FL is designed for scenarios
in which clients want to jointly train a GNN model, with
each of them having a subset of graph samples. Every client
here has local graph samples. Naturally, the general task
for this type of GFL is graph-level prediction (i.e. graph
classification). A typical example is drug development,
where pharmaceutical companies process confidential
datasets, including molecular graphs and their properties.
The goal is to utilize the knowledge learned from each
organization to build a global GNN model while protecting
the raw data. Fedgraphnn [114] has provided examples of
several drug-related tasks.

Intra-graph FL. Intra-graph FL is designed for scenarios
in which clients want to jointly train a GNN model, with
each of them having a subgraph. Different from inter-graph
FL, the graphs in intra-graph are not independent and
are related to others. Furthermore, depending on the way
how subgraphs are related to each other, it is divided
into horizontal and vertical intra-graph FL [131]. As the
names suggest, the local sub-graphs are regarded as
horizontally/vertically partitioned from the global graph.
More specifically, a horizontal partition means that clients
share the same feature and label space but different node
ID spaces. In contrast, a vertical partition means that
clients process different features and label spaces but share
the same node ID space. For example, in the horizontal
setting, each user has a local social network from different
social networking apps, and the local sub-graphs together
form an overall social network, providing extra structural
information. For the vertical setting, the users’ properties in
different sub-graphs (e.g., local financial graph, local social

12

graph, local knowledge graph) are available, providing
different perspectives about the user. Various methods
have been designed to protect data privacy in horizontal
intra-graph FL [115], [116], [117] and vertical intra-graph
FL [118], [119], [120].

Decentralized GFL. The above categories mainly study
the centralized setting where a central server is required
to aggregate local model information from clients as
described in the general framework. Although strategies
have been applied to prevent data leakage from the local
side (e.g., lossy compression before transferring [135], noise
perturbation [136]), the risk remains in the central server
considering it would be possible to infer the protected
information. Therefore, it is not practical for clients to
accept one of them as the leader (i.e., the central server).
From another practical consideration, the existence of a
central server becomes a bottleneck due to computation cost
and communication overhead. To solve these mentioned
issues, several decentralized FGL has been developed [121],
[122] where clients communicate and aggregate information
from each other without a central server.

Applications. Because of the wide range of applications
of graph-federated learning, we provide a separate subsec-
tion here. Recommendation, particularly collaborative filter-
ing based on the user-item interaction graph, is one of the
most crucial applications of GNN. A federated GNN model
is proposed by Huang et al. [123] to ensure personalized
recommendations while minimizing the risk of exposure
to adversarial attacks. Typically, personalized recommenda-
tion requires operations on the entire graph, which could
easily lead to the leakage of private user information. To
circumvent this, the authors mine the decentralized graph
data derived from the global graph. In addition, they in-
troduce a privacy-preserving graph expansion protocol so
that high-order information under privacy protection can
be incorporated into the model. Consequently, both the
local and global information of the graph are incorporated
into the model with privacy protection at the cost of lit-
tle information loss. Another important task for GNN is
molecular property prediction [122], which often requires
a large amount of training data. However, privacy concerns,
regulations, and commercial competition also hinder the
collection of a large and centralized training sample. In the
work by He et al. [122], the authors propose SpreadGNN, a
decentralized multi-task federated learning GNN model for
this task. Notably, SpreadGNN is compatible with partial
labels (i.e., missing labels for part of the training sample).
In addition, the authors show that SpreadGNN is guar-
anteed to converge under certain criteria and is effective
on multiple datasets with partial labels. Note that one
issue associated with using delocalized datasets in federated
GNN for molecular property prediction is that the datasets
obtained from multiple sources can be highly heterogeneous
(i.e. different datasets could cover vastly different regions
in the chemical space), which could compromise the model
performance, so the authors in [124] tackle this issue
by proposing federated learning with instance reweighing
(FLIT(+)), which is capable of aligning local training across
multiple clients.

Federated GNNs have also been explored in the
field of human activity recognition from sensor measure-
ments [125]. Two common major obstacles to human activ-
ity recognition are noisy data and privacy. To tackle the
two issues, GraFeHty [125] is proposed, which utilizes a
semi-supervised algorithm to tackle the prior issue and
the federated learning framework to tackle the later issue.
Concretely, in the federated learning framework, only the
learned representation is transferred out of the device to the
central server so that user privacy can be protected. Also,
federated learning allows the authors to address limitations
of traditional centralized machine learning for human ac-
tivity recognition, e.g., infrastructure availability, network
connectivity, and latency issues.

5 DATASETS AND APPLICATIONS

This section lists datasets used or could potentially be used
to develop privacy attacks and preservation methods for
GNN. They can be divided into Social Network, Citation,
User-item, Molecule, and Protein. We provide a succinct
description for each dataset and their statistics in Table 2.

Social Network. Social network analysis is a crucial
domain that often requires the use of GNN. Social network
analysis can be used to detect sub-communities, help mar-
keting, identify disease propagation, and etc. In a social
network, nodes are typically users of social media, and
edges are the relationships among users. The features of the
users in social network typically include gender, education,
age, geographical information, relationship status, and etc.
• Facebook [25] Facebook Dataset is a small user-relation

network extracted from the Facebook social media. The
nodes represent user accounts while the edges describe
the connectivity. Each user node has different features
including gender, education, hometown, and etc. Lever-
aging real-world social media data to oppose malicious at-
tacks can be particularly meaningful due to its relevance.

• Twitter [25] Twitter Dataset is a small user-relation net-
work extracted from the Twitter social media. The nodes
represent user profiles while the edges describe the con-
nectivity. Node features are user profile information, and
the dataset contains information about circles and ego
networks.

• LastFM [25], [27] LastFM is an Asian social network,
where the nodes are the users from Asian countries,
and the edges describe the mutual follower relationships.
Node features are based on the artists liked by the users.

• Reddit [60], [137] The Reddit dataset is a sub-community
of Reddit posts obtained from Sep. 2014. Thus, the nodes
are the posts, and an edge exists between two posts if the
same user provides comments about both posts. The class
label is the community that the post belongs to.

• Computers [137] Computers is an Amazon co-purchase
graph, of which nodes are merchandise, and an edge
exists between two merchandises if they are often bought
together. The node features are information extracted from
the merchandise reviews, and the class labels are the
merchandise categories.

Citation. In citation graphs, nodes are papers, and edges
characterize the citation relationships among papers. Com-
pared to the social network data, the consequence of adver-

13

TABLE 2: Basic statistics of datasets that have been used or could potentially be used to benchmark privacy attacks and/or
preservation methods on GNNs. We collect the sources of all datasets here.

Dataset Name Data Domain # Graphs (Avg.) # Nodes (Avg.) # Edges # Features Ref.
Facebook Social Network 1 4,039 88,234 - [25] [34]

Twitter Social Network 1 81,306 1,768,149 - [25]
LastFM Social Network 1 7,624 27,806 7,842 [25] [27]
Reddit Social Network 1 232,965 57,307,946 602 [60] [137]

Computers Social Network 1 13,752 245,861 767 [137]
Cora Citation 1 2,708 5,429 1,433 [25] [26], [20]

Citeseer Citation 1 3,312 4,715 3,703 [25] [26] [20]
PubMed Citation 1 19,717 44,338 500 [25] [20]

DBLP Citation 1 17,716 105,734 1,639 [91]
ogbn-arxiv Citation 1 169,343 1,166,243 128 [138]

Aminer Citation 1 659,574 2,878,577 - [137]
Flixster User-item 1 6,000 26,173 - [139]
Douban User-item 1 6,000 136,891 - [139]

YahooMusic User-item 1 6,000 5,335 - [139]
NCI1 Molecule 4,110 29.87 32.30 37 [97], [100]
AIDS Molecule 2,000 15.69 16.20 42 [97], [100]

OVCAR-8H Molecule 4,052 46.67 48.70 65 [97], [100]
PROTEINS Protein 1,113 39.06 72.82 29 [97]
ENZYMES Protein 600 32.63 62.14 21 [97]

sarial attacks on citation graph is much less serious because
the information captured by such dataset is usually not
private. However, due to the high accessibility, citation data
is still frequently used, and thus we summarize a few below.
• Planetoid [25], [26], [20] As one most common collection

of citation datasets, Planetoid includes Cora, Citeseer
and Pubmed, each of which is consisted with scientific
publications that are categorized into different classes.
The edges describe the citation relationships between the
papers. The feature of each node is a 0/1-valued word
vector indicating whether a word exists or not.

• DBLP [91] It is extracted from a website about computer
science bibliography. Different from the aforementioned
citation graphs, DBLP is heterogeneous as it has four
entities including authors, papers, terms, and conferences.

• ogbn-arxiv [138] A directed citation graph of which the
nodes are computer science arXiv papers indexed by
Microsoft academic graph (MAG).

• Aminer [137] It consists of multiple relational datasets
including citation networks, social networks, and etc.

User-item. User-item graph is a bipartite graph describ-
ing the relationship between users and their interacted
items. Leveraging the user-item interaction graph can en-
able the recommendation based on collaborative filtering.
Privacy attack targeting such datasets could cause the infor-
mation leakage of items liked by certain users, together with
the item attributes and user attributes.
• Flixster [139] The rating data of users towards movies.

The listed dataset is a small Flixster subset dataset crawled
by the authors of [139].

• Douban [139] The user-movie interaction graph and con-
nections are useres’ comments on the movies.

• YahooMusic [139] YahooMusic contains information
about the music liked by users.

Molecule. Graph-based drug discovery has gained in-
creased attention recently due to the development of GNN.
Molecules can be represented by graphs, in which nodes
are atoms and edges are chemical bonds. Unlike previous
datasets in which all data points are used to form one single
graph, each data point in molecular dataset is a graph.

• NCI1 [97], [100] The NCI1 dataset contains molecules that
are assessed to be positive and negative to cell lung cancer.
In other words, there are only two classes with either 0 or
1 indicating the cancer-target interactivity.

• AIDS [100], [23], [92] AIDS dataset is constructed from the
AIDS Antiviral Screen Database of Active Compounds,
where the molecules are specific to AIDS.

• OVCAR-8H [97], [100] OVCAR-8H is a database of
molecules targeting Ovarian human cancer cell line.

Protein. Like molecules, proteins can also be represented
as graphs with nodes being typically amino acid and edges
being the amino acid bond or the spatial proximity.
• PROTEINS [97] It includes two clasess: enzymes or non-

enzymes. The nodes are amino acids, and two nodes are
connected if they are within 6 Angstroms from each other.

• ENZYMES [140], [97] A dataset containing protein ter-
tiary structures from the BRENDA enzyme database.

6 FUTURE DIRECTIONS

While many works have demonstrated the applicability and
efficiency of privacy-preserved GNN, newly developed pri-
vacy attacks are continuously being introduced that exhibit
vulnerabilities in existing privacy-preservation techniques.
Additionally, there are generally several avenues yet to be
explored, and many challenges to be overcome before reach-
ing a desired level of performance in preserving privacy
in real-world applications that are deployed with GNNs.
Below we summarize future directions that highlight some
of these open challenges and important new frontiers.
• Information leakage for pre-trained GNNs. Pre-training

and model-sharing are often used to improve the perfor-
mance of GNNs under various tasks especially when the
labels are inadequate, which has led to an increasing inter-
est in leveraging self-supervised learning for GNNs [141],
[142], [143]. Generally, pre-training [144] can be classified
into three categories generally: model-based, mapping-
based, and parameter-based methods. The model-based
one utilizes the pre-trained source domain as the starting
point for the remaining training on the target domain
data. This method is also called model-based fine-tuning.

https://github.com/NDS-VU/awesome-gnn-privacy

14

The mapping-based approach aligns hidden representa-
tions by reducing the difference between the source and
target domains. The parameter-based one operates in a
multi-task fashion to jointly update a shared network to
learn transferable feature representations [145]. However,
these strategies are double-edged sword because they can
lead to private information leakage and compromise pri-
vacy. This issue is particularly concerning since the source
and target datasets for the transfer learning are often
from different organizations. Thus, it is critical to create
a safe environment for different organizations to share the
datasets to build the intact transfer learning model while
minimizing the privacy concern [145]. Methods have been
developed for general deep transfer learning to enhance
privacy. For example, Wu et al. [146] and Mou et al. [147]
propose stochastic gradient Langevin dynamics (SGLD),
yet these for GNNs still await to be developed.

• GNN in distributed learning settings. Federated learning
with GNN has shown promising results in protecting data
privacy, especially in healthcare and financial applica-
tions. To reiterate, in FL, clients are able to jointly train
a GNN model, with each of them having a sub-graph or
subset of graph samples. The focus of most existing works
is on the architecture learning and knowledge sharing
for building a global GNN model without compromising
the privacy of the raw data. Lyu et al [148] provide a
comprehensive survey about the privacy and robustness
of federated learning attacks and defenses. In their survey,
they cover threat model, privacy attacks and defenses,
and poisoning attacks and defenses. However, we want
to point out that very few works focus on the attacks on
GNN-based federated learning, and more investigation
in this area is welcomed. Also, we suggest that it will
be beneficial to investigate privacy preservation of GNNs
under other distributed learning settings.

• Trade-off between privacy and utility. As a long-lasting
issue for ethical AI, the trade-off between the ethical
implication and utility of AI model is almost unavoidable.
Metrics for evaluating the defense performance against
privacy attack are privacy loss, confidence score, and
reconstruction error. The metric for evaluating the model
performance is classification accuracy or regression loss.
In addition, there lacks a standard way of measuring the
trade-off between two groups of metrics, and we believe
that studies on these aspects will be particularly helpful.

• Privacy trade-off in Specialized GNNs Specialized
GNNs have been developed to mitigate a plethora of
data quality challenges, such as imbalanced classifica-
tion [149], [150], [11], mitigating bias [64], [151], [152], het-
erophily [153], [154], [77], etc. An investigation of privacy-
utility-fairness trade-off in general neural network was
done by Marlotte and Giacomo [155]. In their work, the
models under investigation are Simple (S-NN), Fair (F-
NN), differentially private (DP-NN), and differentially
private and fair neural network (DPF-NN). Similar analy-
sis could be conducted on GNN-based models. Recently,
a few works have started to explore this area of privacy
and fairness with GNNs [156], [157]. From the imbalance
perspective, it would be of interest to study disaggregated
performances to better understand which nodes are more
susceptible of privacy attacks, and how they might align

with the majority/minority groups according to sensitive
features and/or class labels. Similarly, such analysis could
be done according to node homophily [75].

• Privacy in GNNs for Complex Graphs While most efforts
investigating privacy attacks and preservations in GNNs
have focused on simple graphs, in many real-world appli-
cations the complex systems are better represented with
complex graphs, where dedicated GNN efforts have been
made, e.g., on hypergraphs [158], [17], multi-dimensional
graphs [159], signed graphs [15], dynamic/temporal
graphs [160], knowledge graphs [161], general heteroge-
neous graphs [162], [163], etc. It is expected that there
could be varying levels of attack/preservation strategies
among these complex networks.

• Generative AI Impacts on Graph/GNN Privacy At-
tacks/Preservation The recent emergence of generative
AI in image/NLP domains has raised many privacy
concerns, especially in the medical/health domain [164].
Also, generated images may include sensitive information
that violates companies’ copyright and disclose confiden-
tial information [165]. Moreover, the inherent uncertainty
in the generation process could even exacerbate the dif-
ficulty of designing stable privacy-preserving techniques.
Since these generative techniques can be easily adapted
to graph-structured data [166], the same privacy concern
may also arise. In molecular generation, the generated
molecules may contain confidential substructures. In the
social network domain, if the generation process involves
user embeddings, the generated content may reflect the
profile information of that user’s neighborhood.

7 CONCLUSION

In this survey, we present a comprehensive review of the
privacy considerations related to graph data and models.
We begin by introducing the necessary concepts and nota-
tions for understanding the topic of graph privacy. We then
provide an overview of various attacks on graph privacy,
categorizing them according to the targeted information.
We summarize the available techniques for privacy preser-
vation. We also review the datasets and applications that
have been used in the study of privacy in graph domains.
Finally, we highlight several potential directions for future
research in this area. Our hope is that this work will serve as
a useful resource for researchers and practitioners interested
in this topic, and will encourage further exploration in this
promising field.
ACKNOWLEDGMENT

This research is supported by the National Science Foun-
dation (NSF) under grant number IIS2239881, The Home
Depot, and Snap Inc. This manuscript has been co-authored
by UT-Battelle, LLC, under contract DE-AC05-00OR22725
with the US Department of Energy (DOE). The US govern-
ment retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains
a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for US government purposes.
DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Pub-
lic Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

15

REFERENCES

[1] Y. Ma and J. Tang, Deep learning on graphs. Cambridge University
Press, 2021.

[2] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE TNNLS,
vol. 32, no. 1, pp. 4–24, 2020.

[3] Y. Rong, T. Xu, J. Huang, W. Huang, H. Cheng, Y. Ma, Y. Wang,
T. Derr, L. Wu, and T. Ma, “Deep graph learning: Foundations,
advances and applications,” in Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data
mining, 2020, pp. 3555–3556.

[4] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural
networks in recommender systems: a survey,” ACM Computing
Surveys, vol. 55, no. 5, pp. 1–37, 2022.

[5] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NeurIPS, 2017, pp. 1024–1034.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[7] L. Lü and T. Zhou, “Link prediction in complex networks: A
survey,” Physica A: statistical mechanics and its applications, vol.
390, no. 6, pp. 1150–1170, 2011.

[8] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu, C. Paris,
S. Nepal, D. Jin et al., “A comprehensive survey on community
detection with deep learning,” IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[9] O. Shchur and S. Günnemann, “Overlapping commu-
nity detection with graph neural networks,” arXiv preprint
arXiv:1909.12201, 2019.

[10] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,”
in ICML. PMLR, 2019, pp. 3835–3845.

[11] Y. Wang, Y. Zhao, N. Shah, and T. Derr, “Imbalanced graph
classification via graph-of-graph neural networks,” in Proceedings
of the 31st ACM CIKM, 2022, pp. 2067–2076.

[12] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun,
L. Cao, F. Ricci, and P. S. Yu, “Graph learning based recommender
systems: A review,” arXiv preprint arXiv:2105.06339, 2021.

[13] Y. Wang, Y. Zhao, Y. Zhang, and T. Derr, “Collaboration-aware
graph convolutional network for recommender systems,” in Pro-
ceedings of the ACM Web Conference 2023, ser. WWW ’23, 2023.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on KDD, 2014, pp. 701–710.

[15] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional net-
works,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 929–934.

[16] J. WANG, S. ZHANG, Y. XIAO, and R. SONG, “A review on
graph neural network methods in financial applications,” Journal
of Data Science, vol. 20, no. 2, pp. 111–134, 2022.

[17] R. Sawhney, S. Agarwal, A. Wadhwa, T. Derr, and R. R. Shah,
“Stock selection via spatiotemporal hypergraph attention net-
work: A learning to rank approach,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 1, 2021, pp. 497–504.

[18] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Interna-
tional conference on machine learning. PMLR, 2017, pp. 1263–1272.

[19] Y. Liu, Y. Wang, O. T. Vu, R. Moretti, B. Bodenheimer, J. Meiler,
and T. Derr, “Interpretable chirality-aware graph neural network
for quantitative structure activity relationship modeling in drug
discovery,” bioRxiv, 2022.

[20] B. Wu, X. Yang, S. Pan, and X. Yuan, “Model extraction attacks
on graph neural networks: Taxonomy and realisation,” in Pro-
ceedings of the 2022 ACM ASIACCS, 2022, pp. 337–350.

[21] D. DeFazio and A. Ramesh, “Adversarial model extraction on
graph neural networks,” arXiv preprint arXiv:1912.07721, 2019.

[22] Z. Zhang, Q. Liu, Z. Huang, H. Wang, C.-K. Lee, and E. Chen,
“Model inversion attacks against graph neural networks,” IEEE
Transactions on Knowledge and Data Engineering, 2022.

[23] X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang, “Stealing
links from graph neural networks,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[24] F. Wu, Y. Long, C. Zhang, and B. Li, “Linkteller: Recovering pri-
vate edges from graph neural networks via influence analysis,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.

[25] V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying privacy
leakage in graph embedding,” in MobiQuitous, 2020, pp. 76–85.

[26] I. E. Olatunji, W. Nejdl, and M. Khosla, “Membership in-
ference attack on graph neural networks,” arXiv preprint
arXiv:2101.06570, 2021.

[27] X. He, R. Wen, Y. Wu, M. Backes, Y. Shen, and Y. Zhang,
“Node-level membership inference attacks against graph neural
networks,” arXiv preprint arXiv:2102.05429, 2021.

[28] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership inference attacks on machine learning: A survey,”
ACM Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[29] K. Li, G. Luo, Y. Ye, W. Li, S. Ji, and Z. Cai, “Adversarial
privacy-preserving graph embedding against inference attack,”
IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6904–6915, 2020.

[30] C. X. Wang, Z. Kai, and W. P. Tay, “Learning privacy-preserving
graph embeddings against sensitive attributes inference.”

[31] H. Hu, L. Cheng, J. P. Vap, and M. Borowczak, “Learning privacy-
preserving graph convolutional network with partially observed
sensitive attributes,” in Proceedings of the ACM WebConf, 2022.

[32] I.-C. Hsieh and C.-T. Li, “Netfense: Adversarial defenses against
privacy attacks on neural networks for graph data,” IEEE TKDE,
2021.

[33] H. Tian, X. Zheng, X. Zhang, and D. D. Zeng, “∈-k anonymization
and adversarial training of graph neural networks for privacy
preservation in social networks,” ECRA, vol. 50, 2021.

[34] S. Sajadmanesh and D. Gatica-Perez, “Locally private graph
neural networks,” arXiv preprint arXiv:2006.05535, 2020.

[35] S. Sajadmanesh, A. S. Shamsabadi, A. Bellet, and D. Gatica-
Perez, “Gap: Differentially private graph neural networks with
aggregation perturbation,” arXiv preprint arXiv:2203.00949, 2022.

[36] H. Zhang, T. Shen, F. Wu, M. Yin, H. Yang, and C. Wu, “Federated
graph learning–a position paper,” arXiv preprint arXiv:2105.11099,
2021.

[37] R. Liu and H. Yu, “Federated graph neural networks: Overview,
techniques and challenges,” arXiv preprint arXiv:2202.07256, 2022.

[38] Z. Liu, L. Yang, Z. Fan, H. Peng, and P. S. Yu, “Federated social
recommendation with graph neural network,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 13, no. 4, 2022.

[39] L. Zhang, T. Zhu, P. Xiong, W. Zhou, and S. Y. Philip, “A
robust game-theoretical federated learning framework with joint
differential privacy,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 4, pp. 3333–3346, 2022.

[40] N. Li, T. Li, and S. Venkatasubramanian, “t-closeness: Privacy
beyond k-anonymity and l-diversity,” in ICDE. IEEE, 2007.

[41] C. Dwork, “Differential privacy,” in International Colloquium on
Automata, Languages, and Programming. Springer, 2006, pp. 1–12.

[42] C. Dwork and R. Pottenger, “Toward practicing privacy,” JAMIA,
vol. 20, no. 1, pp. 102–108, 2013.

[43] B. Bebensee, “Local differential privacy: a tutorial,” arXiv preprint
arXiv:1907.11908, 2019.

[44] X. Xiong, S. Liu, D. Li, Z. Cai, and X. Niu, “A comprehensive
survey on local differential privacy,” Security and Communication
Networks, vol. 2020, 2020.

[45] M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially
private machine learning: How private is private sgd?” arXiv
preprint arXiv:2006.07709, 2020.

[46] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin,
“When machine learning meets privacy: A survey and outlook,”
ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–36, 2021.

[47] M. Rigaki and S. Garcia, “A survey of privacy attacks in machine
learning,” arXiv preprint arXiv:2007.07646, 2020.

[48] S. Zhou, C. Liu, D. Ye, T. Zhu, W. Zhou, and P. S. Yu, “Adversarial
attacks and defenses in deep learning: From a perspective of
cybersecurity,” ACM Computing Surveys, vol. 55, no. 8, 2022.

[49] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine
learning: Threats and solutions,” IEEE Security & Privacy, 2019.

[50] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in IEEE Symposium on Security and Privacy (SP), 2018.

[51] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction apis,” in 25th
USENIX Security Symposium, 2016, pp. 601–618.

[52] T. Takemura, N. Yanai, and T. Fujiwara, “Model extrac-
tion attacks against recurrent neural networks,” arXiv preprint
arXiv:2002.00123, 2020.

[53] X. Zhang, C. Fang, and J. Shi, “Thief, beware of what get you
there: Towards understanding model extraction attack,” arXiv
preprint arXiv:2104.05921, 2021.

[54] M. Veale, R. Binns, and L. Edwards, “Algorithms that remember:
model inversion attacks and data protection law,” Philosophical

16

Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 376, no. 2133, p. 20180083, 2018.

[55] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,”
in Proceedings of the 22nd ACM SIGSAC, 2015, pp. 1322–1333.

[56] S. Hidano, T. Murakami, S. Katsumata, S. Kiyomoto, and
G. Hanaoka, “Model inversion attacks for prediction systems:
Without knowledge of non-sensitive attributes,” in Annual Con-
ference on Privacy, Security and Trust (PST). IEEE, 2017.

[57] C. Park, D. Hong, and C. Seo, “An attack-based evaluation
method for differentially private learning against model inver-
sion attack,” IEEE Access, vol. 7, 2019.

[58] J. Jia and N. Z. Gong, “{AttriGuard}: A practical defense against
attribute inference attacks via adversarial machine learning,” in
27th USENIX Security Symposium, 2018, pp. 513–529.

[59] N. Z. Gong and B. Liu, “Attribute inference attacks in online
social networks,” ACM TOPS, vol. 21, no. 1, pp. 1–30, 2018.

[60] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[61] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and
M. Backes, “Ml-leaks: Model and data independent membership
inference attacks and defenses on machine learning models,”
arXiv preprint arXiv:1806.01246, 2018.

[62] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Demystifying
membership inference attacks in machine learning as a service,”
IEEE Transactions on Services Computing, 2019.

[63] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Mem-
guard: Defending against black-box membership inference at-
tacks via adversarial examples,” in Proceedings of the 2019 ACM
SIGSAC, 2019.

[64] Y. Wang, Y. Zhao, Y. Dong, H. Chen, J. Li, and T. Derr, “Improv-
ing fairness in graph neural networks via mitigating sensitive
attribute leakage,” arXiv preprint arXiv:2206.03426, 2022.

[65] X. Yue, Z. Wang, J. Huang, S. Parthasarathy, S. Moosavinasab,
Y. Huang, S. M. Lin, W. Zhang, P. Zhang, and H. Sun, “Graph
embedding on biomedical networks: methods, applications and
evaluations,” Bioinformatics, vol. 36, no. 4, pp. 1241–1251, 2020.

[66] H. Ashoor, X. Chen, W. Rosikiewicz, J. Wang, A. Cheng, P. Wang,
Y. Ruan, and S. Li, “Graph embedding and unsupervised learning
predict genomic sub-compartments from hic chromatin interac-
tion data,” Nature communications, vol. 11, no. 1, p. 1173, 2020.

[67] Y. Hu, Y. Zhao, C. T. Schunk, Y. Ma, T. Derr, and X. M. Zhou,
“Adept: Autoencoder with differentially expressed genes and
imputation for robust spatial transcriptomics clustering,” Iscience,
vol. 26, no. 6, 2023.

[68] A. Said, R. G. Bayrak, T. Derr, M. Shabbir, D. Moyer,
C. Chang, and X. Koutsoukos, “Neurograph: Benchmarks for
graph machine learning in brain connectomics,” arXiv preprint
arXiv:2306.06202, 2023.

[69] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[70] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge
networks,” in ICML, 2018.

[71] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph neural networks: A review of methods and
applications,” AI open, vol. 1, pp. 57–81, 2020.

[72] L. Sun, Y. Dou, C. Yang, K. Zhang, J. Wang, S. Y. Philip, L. He, and
B. Li, “Adversarial attack and defense on graph data: A survey,”
IEEE Transactions on Knowledge and Data Engineering, 2022.

[73] X. Yuan, C. Zhang, Y. Tian, and C. Zhang, “Navigating graph
robust learning against all-intensity attacks,” in The Second
Workshop on New Frontiers in Adversarial Machine Learning,
2023. [Online]. Available: https://openreview.net/forum?id=
ol1YakBaN8

[74] C. Zhang, Y. Tian, M. Ju, Z. Liu, Y. Ye, N. Chawla, and
C. Zhang, “Chasing all-round graph representation robustness:
Model, training, and optimization,” in The Eleventh International
Conference on Learning Representations, 2022.

[75] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a
feather: Homophily in social networks,” Annual review of soci-
ology, vol. 27, no. 1, pp. 415–444, 2001.

[76] Y. Ma, X. Liu, N. Shah, and J. Tang, “Is homophily a necessity for
graph neural networks?” arXiv preprint arXiv:2106.06134, 2021.

[77] S. Luan, C. Hua, M. Xu, Q. Lu, J. Zhu, X.-W. Chang, J. Fu,
J. Leskovec, and D. Precup, “When do graph neural networks

help with node classification: Investigating the homophily prin-
ciple on node distinguishability,” arXiv preprint arXiv:2304.14274,
2023.

[78] E. Dai, T. Zhao, H. Zhu, J. Xu, Z. Guo, H. Liu, J. Tang, and
S. Wang, “A comprehensive survey on trustworthy graph neural
networks: Privacy, robustness, fairness, and explainability,” arXiv
preprint arXiv:2204.08570, 2022.

[79] B. Wu, J. Li, J. Yu, Y. Bian, H. Zhang, C. Chen, C. Hou, G. Fu,
L. Chen, T. Xu et al., “A survey of trustworthy graph learning:
Reliability, explainability, and privacy protection,” arXiv preprint
arXiv:2205.10014, 2022.

[80] H. Zhang, B. Wu, X. Yuan, S. Pan, H. Tong, and J. Pei, “Trustwor-
thy graph neural networks: Aspects, methods and trends,” arXiv
preprint arXiv:2205.07424, 2022.

[81] M. Khosla, “Privacy and transparency in graph machine learning:
A unified perspective,” arXiv preprint arXiv:2207.10896, 2022.

[82] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” IEEE TPAMI, 2022.

[83] A. Chen, R. A. Rossi, N. Park, P. Trivedi, Y. Wang, T. Yu, S. Kim,
F. Dernoncourt, and N. K. Ahmed, “Fairness-aware graph neural
networks: A survey,” arXiv preprint arXiv:2307.03929, 2023.

[84] A. Boulemtafes, A. Derhab, and Y. Challal, “A review of privacy-
preserving techniques for deep learning,” Neurocomputing, 2020.

[85] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar,
and H. Esmaeilzadeh, “Privacy in deep learning: A survey,” arXiv
preprint arXiv:2004.12254, 2020.

[86] G. Beigi and H. Liu, “A survey on privacy in social media:
Identification, mitigation, and applications,” ACM Transactions on
Data Science, vol. 1, no. 1, pp. 1–38, 2020.

[87] I. Kayes and A. Iamnitchi, “Privacy and security in online social
networks: A survey,” Online Social Networks and Media, 2017.

[88] P. S. Yu, O. Kotevska, and T. Derr, “Pas: Privacy algorithms in
systems,” in Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, 2022, pp. 5181–5182.

[89] M. Hussain, M. W. Nadeem, S. Iqbal, S. Mehrban, S. N. Fatima,
O. Hakeem, and G. Mustafa, “Security and privacy in fintech:
A policy enforcement framework,” in Research Anthology on Con-
cepts, Applications, and Challenges of FinTech, 2021, pp. 372–384.

[90] K. M. Chong, “Privacy-preserving healthcare informatics: A re-
view,” in ITM Web of Conferences, vol. 36. EDP Sciences, 2021.

[91] Y. Shen, X. He, Y. Han, and Y. Zhang, “Model stealing attacks
against inductive graph neural networks,” in 2022 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2022, pp. 1175–1192.

[92] Z. Zhang, Q. Liu, Z. Huang, H. Wang, C. Lu, C. Liu, and
E. Chen, “Graphmi: Extracting private graph data from graph
neural networks,” arXiv preprint arXiv:2106.02820, 2021.

[93] I. E. Olatunji, M. Rathee, T. Funke, and M. Khosla, “Pri-
vate graph extraction via feature explanations,” arXiv preprint
arXiv:2206.14724, 2022.

[94] I. E. Olatunji, A. Hizber, O. Sihlovec, and M. Khosla, “Does
black-box attribute inference attacks on graph neural networks
constitute privacy risk?” arXiv preprint arXiv:2306.00578, 2023.

[95] Z. Li and Y. Zhang, “Membership leakage in label-only expo-
sures,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 880–895.

[96] M. Conti, J. Li, S. Picek, and J. Xu, “Label-only membership
inference attack against node-level graph neural networks,” in
Proceedings of the 15th ACM Workshop on Artificial Intelligence and
Security, 2022, pp. 1–12.

[97] B. Wu, X. Yang, S. Pan, and X. Yuan, “Adapting membership
inference attacks to gnn for graph classification: Approaches and
implications,” in 2021 IEEE ICDM. IEEE, 2021, pp. 1421–1426.

[98] L. Xu, J. Zeng, W. Peng, H. Wu, K. Yue, H. Ding, L. Zhang, and
X. Wang, “Modeling and predicting user preferences with multi-
ple item attributes for sequential recommendations,” Knowledge-
Based Systems, vol. 260, p. 110174, 2023.

[99] B. Zhao, Z. Feng, X. Jia, and Y. Guo, “Mia-grgn: a graph resid-
ual generation network for node classification based on multi-
information aggregation,” Available at SSRN 4441020.

[100] Z. Zhang, M. Chen, M. Backes, Y. Shen, and Y. Zhang, “Inference
attacks against graph neural networks,” in Proceedings of the 31th
USENIX Security Symposium, 2022, pp. 1–18.

[101] Y. Wang and L. Sun, “Membership inference attacks on knowl-
edge graphs,” arXiv preprint arXiv:2104.08273, 2021.

[102] X. Wang, H. Jin, A. Zhang, X. He, T. Xu, and T.-S. Chua, “Disen-
tangled graph collaborative filtering,” in ACM SIGIR, 2020.

https://openreview.net/forum?id=ol1YakBaN8
https://openreview.net/forum?id=ol1YakBaN8

17

[103] S. Wang, Y. Zheng, and X. Jia, “Secgnn: Privacy-preserving graph
neural network training and inference as a cloud service,” IEEE
Transactions on Services Computing, 2023.

[104] H. Liu, N. Zhao, X. Zhang, H. Lin, L. Yang, B. Xu, Y. Lin,
and W. Fan, “Dual constraints and adversarial learning for fair
recommenders,” Knowledge-Based Systems, 2022.

[105] P. Liao, H. Zhao, K. Xu, T. Jaakkola, G. J. Gordon, S. Jegelka,
and R. Salakhutdinov, “Information obfuscation of graph neural
networks,” in ICML. PMLR, 2021.

[106] B. Wang, J. Guo, A. Li, Y. Chen, and H. Li, “Privacy-preserving
representation learning on graphs: A mutual information per-
spective,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 1667–1676.

[107] C. Kumar, R. Ryan, and M. Shao, “Adversary for social good:
Protecting familial privacy through joint adversarial attacks,” in
Proceedings of the AAAI, vol. 34, no. 07, 2020, pp. 11 304–11 311.

[108] T. T. Mueller, J. C. Paetzold, C. Prabhakar, D. Usynin, D. Rueckert,
and G. Kaissis, “Differentially private graph classification with
gnns,” arXiv preprint arXiv:2202.02575, 2022.

[109] A. Daigavane, G. Madan, A. Sinha, A. G. Thakurta, G. Aggar-
wal, and P. Jain, “Node-level differentially private graph neural
networks,” arXiv preprint arXiv:2111.15521, 2021.

[110] I. E. Olatunji, T. Funke, and M. Khosla, “Releasing graph neural
networks with differential privacy guarantees,” arXiv preprint
arXiv:2109.08907, 2021.

[111] T. T. Mueller, J. C. Paetzold, C. Prabhakar, D. Usynin, D. Rueckert,
and G. Kaissis, “Differentially private graph neural networks for
whole-graph classification,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[112] W. Lin, B. Li, and C. Wang, “Towards private learning on decen-
tralized graphs with local differential privacy,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 2936–2946, 2022.

[113] S. Zhang, H. Yin, T. Chen, Z. Huang, L. Cui, and X. Zhang,
“Graph embedding for recommendation against attribute infer-
ence attacks,” in Proceedings of the Web Conference, 2021.

[114] C. He, K. Balasubramanian, E. Ceyani, C. Yang, H. Xie, L. Sun,
L. He, L. Yang, P. S. Yu, Y. Rong et al., “Fedgraphnn: A federated
learning system and benchmark for graph neural networks,”
arXiv preprint arXiv:2104.07145, 2021.

[115] C. Chen, W. Hu, Z. Xu, and Z. Zheng, “Fedgl: federated graph
learning framework with global self-supervision,” arXiv preprint
arXiv:2105.03170, 2021.

[116] C. Wu, F. Wu, Y. Cao, Y. Huang, and X. Xie, “Fedgnn: Federated
graph neural network for privacy-preserving recommendation,”
arXiv preprint arXiv:2102.04925, 2021.

[117] Y. Yao and C. Joe-Wong, “Fedgcn: Convergence and commu-
nication tradeoffs in federated training of graph convolutional
networks,” arXiv preprint arXiv:2201.12433, 2022.

[118] J. Zhou, C. Chen, L. Zheng, H. Wu, J. Wu, X. Zheng, B. Wu,
Z. Liu, and L. Wang, “Vertically federated graph neural network
for privacy-preserving node classification,” 2020.

[119] G. Mei, Z. Guo, S. Liu, and L. Pan, “Sgnn: A graph neural
network based federated learning approach by hiding structure,”
in 2019 IEEE International Conference on Big Data. IEEE, 2019.

[120] X. Ni, X. Xu, L. Lyu, C. Meng, and W. Wang, “A vertical federated
learning framework for graph convolutional network,” arXiv
preprint arXiv:2106.11593, 2021.

[121] Y. Pei, R. Mao, Y. Liu, C. Chen, S. Xu, F. Qiang, and B. E. Tech,
“Decentralized federated graph neural networks,” in International
Workshop on Federated and Transfer Learning for Data Sparsity and
Confidentiality in Conjunction with IJCAI, 2021.

[122] C. He, E. Ceyani, K. Balasubramanian, M. Annavaram, and
S. Avestimehr, “Spreadgnn: Serverless multi-task federated learn-
ing for graph neural networks,” arXiv preprint arXiv:2106.02743,
2021.

[123] Y. Huang, C. Wu, F. Wu, L. Lyu, T. Qi, and X. Xie, “A federated
graph neural network framework for privacy-preserving person-
alization,” 2022.

[124] W. Zhu, J. Luo, and A. D. White, “Federated learning of molec-
ular properties with graph neural networks in a heterogeneous
setting,” Patterns, vol. 3, no. 6, p. 100521, 2022.

[125] A. Sarkar, T. Sen, and A. K. Roy, “Grafehty: Graph neural network
using federated learning for human activity recognition,” in
2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2021, pp. 1124–1129.

[126] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
arXiv preprint arXiv:1611.07308, 2016.

[127] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Ad-
versarial autoencoders,” arXiv preprint arXiv:1511.05644, 2015.

[128] P. Kairouz, K. Bonawitz, and D. Ramage, “Discrete distribution
estimation under local privacy,” in ICML. PMLR, 2016.

[129] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gn-
nexplainer: Generating explanations for graph neural networks,”
Advances in neural information processing systems, vol. 32, 2019.

[130] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[131] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine
learning: Concept and applications,” ACM TIST, 2019.

[132] J. Zhang, S. Vahidian, M. Kuo, C. Li, R. Zhang, G. Wang, and
Y. Chen, “Towards building the federated gpt: Federated instruc-
tion tuning,” arXiv preprint arXiv:2305.05644, 2023.

[133] J. Zhang, Z. Du, J. Sun, A. Li, M. Tang, Y. Wu, Z. Gao, M. Kuo, H.-
H. Li, and Y. Chen, “Next generation federated learning for edge
devices: An overview,” in 2022 IEEE 8th International Conference
on Collaboration and Internet Computing (CIC). IEEE, 2022, pp.
10–15.

[134] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS. PMLR, 2017.

[135] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,”
Advances in neural information processing systems, vol. 32, 2019.

[136] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q.
Quek, and H. V. Poor, “Federated learning with differential pri-
vacy: Algorithms and performance analysis,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.

[137] Y. Chen, H. Yang, Y. Zhang, K. Ma, T. Liu, B. Han, and J. Cheng,
“Understanding and improving graph injection attack by pro-
moting unnoticeability,” arXiv preprint arXiv:2202.08057, 2022.

[138] X. Zhang and M. Zitnik, “Gnnguard: Defending graph neural
networks against adversarial attacks,” Advances in neural informa-
tion processing systems, vol. 33, pp. 9263–9275, 2020.

[139] S. Ru, B. Zhang, Y. Jie, C. Zhang, L. Wei, and C. Gu, “Graph
neural networks for privacy-preserving recommendation with
secure hardware,” in 2021 International Conference on Networking
and Network Applications (NaNA). IEEE, 2021, pp. 395–400.

[140] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and
M. Neumann, “Tudataset: A collection of benchmark datasets for
learning with graphs,” arXiv preprint arXiv:2007.08663, 2020.

[141] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node sim-
ilarity preserving graph convolutional networks,” in Proceedings
of the 14th ACM WSDM, 2021, pp. 148–156.

[142] Y. Wang, W. Jin, and T. Derr, “Graph neural networks: Self-
supervised learning,” Graph Neural Networks: Foundations, Fron-
tiers, and Applications, pp. 391–420, 2022.

[143] W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang,
“Self-supervised learning on graphs: Deep insights and new
direction,” arXiv preprint arXiv:2006.10141, 2020.

[144] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji,
Q. Yan, L. He et al., “A comprehensive survey on pretrained
foundation models: A history from bert to chatgpt,” arXiv preprint
arXiv:2302.09419, 2023.

[145] C. Chen, B. Wu, M. Qiu, L. Wang, and J. Zhou, “A comprehensive
analysis of information leakage in deep transfer learning,” arXiv
preprint arXiv:2009.01989, 2020.

[146] B. Wu, C. Chen, S. Zhao, C. Chen, Y. Yao, G. Sun, L. Wang,
X. Zhang, and J. Zhou, “Characterizing membership privacy in
stochastic gradient langevin dynamics,” in Proceedings of AAAI,
vol. 34, no. 04, 2020, pp. 6372–6379.

[147] W. Mou, L. Wang, X. Zhai, and K. Zheng, “Generalization bounds
of sgld for non-convex learning: Two theoretical viewpoints,” in
Conference on Learning Theory. PMLR, 2018, pp. 605–638.

[148] L. Lyu, H. Yu, X. Ma, C. Chen, L. Sun, J. Zhao, Q. Yang, and S. Y.
Philip, “Privacy and robustness in federated learning: Attacks
and defenses,” IEEE TNNLS, 2022.

[149] Y. Ma, Y. Tian, N. Moniz, and N. V. Chawla, “Class-imbalanced
learning on graphs: A survey,” arXiv preprint arXiv:2304.04300,
2023.

[150] Y. Wang, C. Aggarwal, and T. Derr, “Distance-wise prototypical
graph neural network in node imbalance classification,” arXiv
preprint arXiv:2110.12035, 2021.

[151] Y. Wang, “Fair graph representation learning with imbalanced
and biased data,” in Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, 2022, pp. 1557–1558.

18

[152] E. Dai and S. Wang, “Say no to the discrimination: Learning fair
graph neural networks with limited sensitive attribute informa-
tion,” in Proceedings of the 14th ACM WSDM, 2021, pp. 680–688.

[153] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph
neural networks for graphs with heterophily: A survey,” arXiv
preprint arXiv:2202.07082, 2022.

[154] Y. Wang and T. Derr, “Tree decomposed graph neural network,”
in Proceedings of the 30th ACM CIKM, 2021, pp. 2040–2049.

[155] M. Pannekoek and G. Spigler, “Investigating trade-offs in util-
ity, fairness and differential privacy in neural networks,” arXiv
preprint arXiv:2102.05975, 2021.

[156] X. Wang, T. Gu, X. Bao, L. Chang, and L. Li, “Individual fairness
for local private graph neural network,” Knowledge-Based Systems,
vol. 268, p. 110490, 2023.

[157] X. Wang, T. Gu, X. Bao, and L. Chang, “Fair and privacy-
preserving graph neural network,” in International Conference on
Database Systems for Advanced Applications. Springer, 2023.

[158] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph
neural networks,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 3558–3565.

[159] Y. Ma, S. Wang, C. C. Aggarwal, D. Yin, and J. Tang, “Multi-
dimensional graph convolutional networks,” in Proceedings of the
2019 SIAM SDM, 2019, pp. 657–665.

[160] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on
dynamic graphs,” arXiv preprint arXiv:2006.10637, 2020.

[161] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional
networks,” arXiv preprint arXiv:1703.06103, 2017.

[162] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW, 2019.

[163] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, “A survey of
heterogeneous information network analysis,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2016.

[164] B. Meskó and E. J. Topol, “The imperative for regulatory over-
sight of large language models (or generative ai) in healthcare,”
npj Digital Medicine, vol. 6, no. 1, p. 120, 2023.

[165] “Generative ai has an intellectual property problem,”
https://hbr.org/2023/04/generative-ai-has-an-intellectual-
property-problem.

[166] W. Fan, C. Liu, Y. Liu, J. Li, H. Li, H. Liu, J. Tang, and Q. Li, “Gen-
erative diffusion models on graphs: Methods and applications,”
arXiv preprint arXiv:2302.02591, 2023.

Yi Zhang received his Bachelor degree from the
University of Minnesota Twin Cities, where he
majored in computer science. He helped com-
plete this work while pursuing a Ph.D. degree in
Computer Science at the Vanderbilt University.

Yuying Zhao received the B.S. and M.S. de-
grees in Huazhong University of Science and
Technology, China, both with “Outstanding Grad-
uate” award. She is currently pursuing the Ph.D.
degree in Computer Science at Vanderbilt Uni-
versity. Her research interest lies in the intersec-
tion of machine learning and graph mining with a
special focus on learning beyond-utility perspec-
tives, including fairness, explainability, and diver-
sity. Her papers have been published in AAAI,
KDD, WebConf, AMIA, iScience, etc.

Zhaoqing Li received the B.S and M.S. degree
in automation from Northwestern Polytechnical
University, China. He is currently pursuing the
Ph.D. degree with the Chinese University of
Hong Kong, Hong Kong SAR, China. His current
research interests include machine learning and
speech recognition.

Xueqi Cheng received the B.S. degree from
Southwest Jiaotong University, and the M.S. de-
gree from University of Michigan, Ann Arbor. He
is currently pursuing the Ph.D. degree in Com-
puter Science Department at Vanderbilt Uni-
versity. His research interests include machine
learning and data mining on graphs.

Yu Wang received the B.S. degree from Harbin
Institute of Technology with with ’Outstanding
Graduate’ award. He is currently pursuing his
Ph.D. degree in Computer Science Department
at Vanderbilt University. His research interest fo-
cuses on machine learning and data mining over
graphs with a specific emphasis on overcoming
data-quality issues and graph topological learn-
ing. He had published papers in KDD, WebConf,
CIKM, WSDM, and e.t.c.

Olivera Kotevska is a research scientist in
Computer Science and Mathematics Division at
Oak Ridge National Laboratory (ORNL), Ten-
nessee, USA. She received her Ph.D. degree in
Computer Science from the Universite Grenoble
Alpes, France in 2018 and during her doctorate
she performed research at the National Institute
of Standards and Technology (NIST) in Wash-
ington, DC. Her research work focuses on pri-
vacy algorithms, machine learning, and intersec-
tion for various electric grids, human mobility and

biomedical applications. She publish and regularly serves as a program
committee member at the top conferences in these domains and served
in organizational roles including Co-Chair of Privacy Algorithms for
Systems workshop, Co-Chair of IEEE Big Data Industry and Govern-
ment Program, Chair of IEEE Power and Energy Society Computational
Analytical Methods Subcommittee, and Co-Editor of Sensors journal
special issue IoT Data Analytics. Dr.Kotevska is an organizer and chair
of IEEE WiE East Tennessee affinity group. She received IEEE Senior
membership award in ’21 and ORNL CSMD Outreach and Service
award in ’20.

Philip S. Yu received the B.S. Degree in E.E.
from National Taiwan University, the M.S. and
Ph.D. degrees in E.E. from Stanford University,
and the M.B.A. degree from New York University.
He is a Distinguished Professor in Computer
Science at the University of Illinois at Chicago
and also holds the Wexler Chair in Information
Technology. Before joining UIC, Dr. Yu was with
IBM, where he was manager of the Software
Tools and Techniques department at the Watson
Research Center. His research interest is on big

data, including data mining, data stream, database and privacy. He has
published more than 1,200 papers in refereed journals and conferences.
He holds or has applied for more than 300 US patents. Dr. Yu is a Fellow
of the ACM and the IEEE. Dr. Yu is the recipient of ACM SIGKDD 2016.
Innovation Award for his influential research and scientific contributions
on mining, fusion and anonymization of big data, the IEEE Computer
Society’s 2013 Technical Achievement Award for “pioneering and fun-
damentally innovative contributions to the scalable indexing, querying,
searching, mining and anonymization of big data”, and the Research
Contributions Award from IEEE Intl. Conference on Data Mining (ICDM)
in 2003 for his pioneering contributions to the field of data mining. He
also received the ICDM 2013 10-year Highest-Impact Paper Award, and
the EDBT Test of Time Award (2014). He was the Editor-in-Chiefs of
ACM Transactions on Knowledge Discovery from Data (2011-2017) and
IEEE Transactions on Knowledge and Data Engineering (2001-2004).

19

Tyler Derr is an Assistant Professor at Vander-
bilt University in the Department of Computer
Science and Data Science Institute. He earned
his PhD in Computer Science from Michigan
State University in 2020. His research focuses
on data mining and machine learning, with em-
phasis on social network analysis, deep learning
on graphs, and data science for social good.
He is actively involved in top conferences in his
field, both in terms of publishing and serving as
an SPC/PC member, while receiving recognition

such as the Best Student Poster Award at SDM’19 and Best Reviewer
Awards at ICWSM’19 and ’21, as well as WSDM’22. He has contributed
to the organization of international conferences, including serving as the
Publicity Co-Chair of KDD’22 and ’23, Doctoral Consortium Co-Chair
of WSDM’22, and Proceedings Co-Chair of KDD’21. Being passionate
about sharing knowledge, he has co-organized multiple workshops in-
cluding Machine Learning on Graphs (MLoG) Workshop at WSDM’22
and ’23 along with at ICDM’22 and ’23; he has delivered tutorials
on Graph Neural Networks at KDD’20 and AAAI’21. Additionally, he
was honored with the Fall 2020 Teaching Innovation Award from the
School of Engineering at Vanderbilt University, highlighting his dedica-
tion to exceptional teaching. Tyler received the NSF CAREER Award
in 2023. For more detailed information, please visit his website at
https://www.TylerDerr.com.

	Introduction
	Preliminaries of Data Privacy, Attacks and Deep Learning on Graphs
	Privacy on Data
	Privacy and Attacks on Deep Learning (DL)
	Vulnerabilities of DL
	Privacy Approaches for DL
	Privacy Attacks on DL

	Graphs and Graph-structured Data
	Deep Learning on Graphs
	Neural Message Passing GNNs
	Typical GNNs

	Motivation
	Vulnerabilities of Graph Data and GNN Models
	Related Surveys and Differences

	Privacy attacks on GNNs
	Model Extraction Attack
	Graph Structure Reconstruction
	Attribute Inference Attack
	Membership Inference Attack

	Privacy preservation techniques on GNNs
	Latent Factor Disentangling
	Adversarial Training
	Differential Privacy
	Federated Learning

	Datasets and Applications
	Future directions
	Conclusion
	References
	Biographies
	Yi Zhang
	Yuying Zhao
	Zhaoqing Li
	Xueqi Cheng
	Yu Wang
	Olivera Kotevska
	Philip S. Yu
	Tyler Derr

