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Abstract

In computer-aided drug discovery, quantitative structure ac-
tivity relation models are trained to predict biological activ-
ity from chemical structure. Despite the recent success of ap-
plying graph neural network to this task, important chemi-
cal information such as molecular chirality is ignored. To fill
this crucial gap, we propose Molecular-Kernel Graph Neural
Network (MolKGNN) for molecular representation learning,
which features SE(3)-/conformation invariance, chirality-
awareness, and interpretability. For our MolKGNN, we first
design a molecular graph convolution to capture the chemi-
cal pattern by comparing the atom’s similarity with the learn-
able molecular kernels. Furthermore, we propagate the simi-
larity score to capture the higher-order chemical pattern. To
assess the method, we conduct a comprehensive evaluation
with nine well-curated datasets spanning numerous important
drug targets that feature realistic high class imbalance and it
demonstrates the superiority of MolIKGNN over other graph
neural networks in computer-aided drug discovery. Mean-
while, the learned kernels identify patterns that agree with do-
main knowledge, confirming the pragmatic interpretability of
this approach. Our code and supplementary material are pub-
licly available at https://github.com/meilerlab/MolKGNN.

1 Introduction

Developing new drugs is time-consuming and expensive,
e.g., it took cabozantinib, an oncologic drug, 8.8 years and
$1.9 billion to get on the market (Prasad and Mailankody
2017). To assist this process, computer-aided drug discov-
ery (CADD) has been widely used. In CADD, several math-
ematical and machine learning methods have been devel-
oped to model the Quantitative Structure Activity Relation-
ship (QSAR) to predict the biological activity of molecules
based on their geometric structures (Sliwoski et al. 2014).
Recently, Graph Neural Networks (GNNs) have success-
fully been applied in many fields, e.g., social networks and
recommender systems (Zhou et al. 2020). As molecules can
be essentially viewed as graphs with atoms as nodes and
chemical bonds as edges, GNNs are naturally adopted to
perform such graph classification, i.e., predicting the bio-
logical activity of molecules based on their geometric struc-
tures (Atz, Grisoni, and Schneider 2021). A typical GNN
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Figure 1: Analogy between (A) 2D image convolution and
(B) 3D molecular convolution. In (A), the more similar the
image patch is to the image kernel, the higher the output
value. We design molecular convolution (B) to output a
higher value if the molecular neighborhood is similar to the
molecular kernel. The kernel provides the basis for our chi-
rality calculation and has added benefit of interpretability.

architecture for graph classification begins with an encoder
extracting node representations by passing neighborhood
information followed by pooling operations that integrate
node representations into graph representations, which are
fed into a classifier to predict graph classes (Zhou et al.
2020).

Despite the promise of GNN models applied to molecular
representation learning, existing GNN models either blindly
follow the message passing framework without considering
molecular constraints on graphs (Feng et al. 2022), fail to
integrate chirality (Schiitt et al. 2017), or lack interpretabil-
ity (Adams, Pattanaik, and Coley 2021). To fill this crucial
gap, we develop a new GNN model named MolKGNN that
features SE(3)/conformation invariance, chirality-awareness
and provides a form of interpretability. Our main contribu-
tions can be summarized as follows:

Novel Interpretable Molecular Convolution: We design
a new convolution operation to capture chemical pattern
of each atom by quantifying the similarity between the
atom’s neighboring subgraph and the learnable molecular
kernel, which is inherently interpretable.

Better Chirality Characterization: Rather than listing
all permutations of neighbors for a chiral center, or using
dihedral angles, the chirality calculation module in our de-
sign only needs a lightweight linear algebra calculation.



* Comprehensive Evaluation in CADD: We perform
a comprehensive evaluation using well-curated datasets
spanning numerous important drug targets (that feature
realistic high class imbalance) and metrics that bias pre-
dicted active molecules for actual experimental validation.
Ultimately, we demonstrate the superiority of MolKGNN
over other GNNs in CADD.

2 Related Work
2.1 Extending Convolutions to the Graph Domain

Convolutional Neural Networks (CNN) have enjoyed much
success on images. However, convolution fails to readily
extend to graphs due to their irregular structures. Early ef-
forts on GNNs focused on spectral convolution (Defferrard,
Bresson, and Vandergheynst 2016; Kipf and Welling 2016).
Later, spatial-based methods define graph convolution based
on nodes’ spatial relationship (Gilmer et al. 2017)

Vanilla GNN is known to have limited expressive power
bounded by the Weisfeiler-Lehman (WL) graph isomor-
phism test (Xu et al. 2018) and hence have difficulty in
finding substructures. On the other hand, graph kernels can
take substructures into consideration by computing a simi-
larity score among graph substructures. Recently, a strand
of work extend GNNs by combining them with graph ker-
nels to distinguish substructures (Cosmo et al. 2021; Feng
et al. 2022). However, we argue that extending the expres-
sive power to distinguish more substructures is not neces-
sarily helpful with molecular representation learning. For
example, (Cosmo et al. 2021) explicitly states their model
could distinguish triangles. Nevertheless, although present
in some drug molecules (Talele 2016), triangles are rare due
to chemical instability. This can be verified by an empirical
observation in the annual best-selling small molecule drugs
postersl (McGrath, Brichacek, and Njardarson 2010). More-
over, learning a useful discrete structure in a differentiable
way is challenging and hence the structure learning process
in (Cosmo et al. 2021) uses random modification. This raises
the question of whether it is worth the extra computational
time associated with finding a structural similarity. Instead,
our method identifies semantic similarity between a 1-hop
molecular neighborhood and a molecule kernel (Figure. 3).

2.2 Molecular Representation Learning

It is not surprising to see the application of GNN to
molecules due to the ready interpretation of atoms as nodes
and bonds as edges. Even the term graph (in the sense used
in graph theory) was used for the first time to draw a re-
lationship between mathematics and chemistry (Sylvester
1878). Several attempts have been made to leverage GNN’s
for molecular representation learning. In this paper, we clas-
sify them into four categories.

Models in the first category capture the 2D connectivity
(i.e., molecular constitution). Examples include (Yang et al.
2019; Coley et al. 2017). Some molecular properties, espe-
cially pharmacological activities, are dependent on the chi-
rality of molecules (H Brooks, C Guida, and G Daniel 2011).

! https://njardarson.lab.arizona.edu/content/top- pharmaceuticals- poster
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A chiral molecule cannot be superimposed on its own mirror
image. For such tasks, molecules should be treated as non-
invariant to reflection. Models in this second category are
reflection-sensitive, or chirality-aware and sometimes called
2.5D QSAR models. Examples include (Liu et al. 2021;
Pattanaik et al. 2020). However, molecules are not planar
graphs but are 3D entities. Due to rotations around single
bonds, molecules can display different conformations. Mod-
els in this third category, e.g., (Flam-Shepherd et al. 2021),
take the dihedral angles of rotatable bonds into consideration
to distinguish different conformations. As molecules exist as
conformational ensembles, a fourth category (4D) encodes
ensembles instead of individual conformations (Adams, Pat-
tanaik, and Coley 2021).

3 Preliminaries and Problem Definition

In this section, we introduce all notations used throughout
this paper and define the problem of QSAR modeling.

Notations We represent a molecule as an attributed and
undirected graph G = (V&,£%) where V&, £ are the set
of nodes (atoms) and edges (chemical bonds). Let v € V&
denote the node v and e,, € EC denote an edge be-
tween v and u. Moreover, we represent the node attribute

. e . .
matrix as X¢ € RIV71Xdv and edge attribute matrix as

ECG ¢ RVEIXIVIIxde where dy,d. are the dimension of
node and edge features. Specifically, we let X& be the at-
tribute of node v and EG, be the attribute of edge e,,,. The

node coordinate matrix is represented as PG € RIV?1x3 and
P& denotes the 3D coordinates of v. The graph topology is
described by its adjacency matrix AG € {1,0}V7IxV°|
where AS, = 1if ey, € €%, and AG, = 0 otherwise.
Note that bond types are encoded as edge features. Fur-
thermore, we denote the 1-hop neighborhood of v in G as

NE = {u € V| (v,u) € EF}.

Problem Definition Based on the above notations, we
formulate QSAR modeling as a graph classification prob-
lem, which can be mathematically defined as: Given a set
of attributed molecule graphs G = {G1,Ga, ..., Gn} with
each molecule G; (VG gGi XGi E% PY) as de-
fined above and its corresponding one-hot encoded label
Y,;, we aim to learn a graph encoder F and a classi-
fier C : C(F(X% E% AC: P%)) — Y, that is well-
predictive of the ground truth label Y ; of molecule G..

4 Molecular-Kernel Graph Neural Network

In this section, we introduce the framework of our proposed
MOolKGNN. As shown in Figure 2, MolKGNN recursively
performs molecular convolution and message aggregation to
learn representations of each molecule. In molecular con-
volution, we design learnable molecular kernels to capture
chemically-meaningful subgraph pattern of each node/atom.
Specifically, we calculate the similarity scores of each atom
with its neighborhood to the molecular kernels and treat the
obtained score as new atom features, which essentially de-
scribes the distance of the atom’s chemical properties to the
patterns encoded in the kernels. Then in message aggrega-
tion, we leverage feature propagation to aggregate similarity
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Figure 2: An overview of the proposed MolKGNN. For each
atom v € V of the molecule G, its 1-hop star-like molecu-
lar neighborhood subgraph S! is convoluted with a set of K
learnable kernels 8" = {S/'}E | to get its similarity vec-
tor and collectively for all nodes, after applying the same
convolution as above, we end up with the similarity matrix
®' ¢ RVIXK in layer I. Specifically, ®;, = ¢(S,,,S})
quantifies the similarity between the neighborhood subgraph
around atom v; and the k™ kernel (See Fig. 3 for more de-
tails of calculating ¢(S,,,S})). The ®' serves as the new
atom attributes for the computation in the next layer [ + 1.

scores of neighborhoods to further capture chemical context
of each atom. These two modules proceed alternatively to
gradually enlarge the receptive field so that we can capture
higher-order chemical patterns. Next, we introduce details
of molecular convolution and message aggregation.

4.1 Molecular Convolution

In 2D images, convolution operation can be regarded as cal-
culating the similarity between the image patch and the im-
age kernel. Larger output values indicate higher visual sim-
ilarity patterns such as edges, strips, curves (Lin, Huang,
and Wang 2021). Inspired by that, we design a molecu-
lar convolution that outputs higher values when a molecu-
lar neighborhood and kernels are more chemically similar
(Figure 1). However, performing convolution on the irreg-
ular neighborhood subgraphs requires the learnable molec-
ular kernels to have correspondingly different geometrical
structures, which is computationally prohibitive. To handle
this challenge, for each atom v of degree d in GG, we only
consider its 1-hop star-like neighborhood subgraph S =
(V9,E9) where V¥ = {v}UNE and £ = {e,y|u € NE}.
To make the molecular convolution feasible, we initialize
the molecular kernel to also follow star-structure and de-
note it as S = (V¥',€5) where V' = {v'} UNY
with v’ being the central node without loss of generality and
E%" = {eyrw |t € N5'}. Let the learnable feature matrix
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Figure 3: Illustration of the molecular convolution. The sim-
ilarity between a neighborhood subgraph S and a kernel S’
is quantified by ¢(S, S’). This similarity score is calculated
as the combination of ¢, Pns, Pes, Which quantify the simi-
larity of center node, neighboring nodes, edges, respectively.

and edge feature matrix of S’ be X5 € R(@+D*dn gpd
ES" € R4*de respectively. Then we define the operation of
molecular convolution between the atom v and the molec-
ular kernel S’ as quantifying the similarity ¢ between v’s
neighborhood subgraph S and the kernel S”:

#(S,8") = wesdes (9, S”) + wasdns (9, 5”) + weses (S, 5”), (1)

where ¢, ns, Pes quantify the similarity from three dif-
ferent aspects: the central similarity, neighborhood similar-
ity, and edge similarity. We combine them together with
learnable weights we, wns, wes € [0,1] after softmax-
normalization.

Central Similarity We first capture the chemical property
of the atom v itself in .S by computing its similarity to the
central node v’ in the kernel S’

bes(S,9') = sim(X3, X5, )
where X5, X5 are attributes of the central atom v in the
subgraph S and the central node v’ in the kernel S’. The
sim(-, -) is the function measuring vector similarity and we
use cosine similarity throughout this work.

Neighboring Node and Edge Similarity Besides the cen-
tral node, the chemical property of an atom is also impacted
by its neighborhood context, which motivates us to further
quantify the similarity between 1) the neighboring nodes
NS in S and N5 in S’ and 2) the edges £ and £5".
Before calculating ¢ps, ¢es between S and S’, we face a
matching problem. For example, in Figure 3, the node u; in
S has more than one matching candidates, i.e., {u}, u), us}
in S’. Here we seek a bijective matching x* : ./\/'US — NUS,/
such that the average attribute similarity between u € N°
and x*(u) € N, 5/ over all neighbors can be maximized:

1 . ’
— Z sim(X5, Xi(u)).
ue./\/’,l;g

3

X" = arg max
X

WS



Figure 4: Illustration of chirality calculation. Corresponding
nodes given by the optimal matching x* are of the same col-
ors. sgn(-) is the sign function. We can distinguish mirror-
imaged neighborhoods of two atoms by comparing the ori-
entation of their corresponding tetrahedrons (i.e., the sign of
the tetrahedral volume).

Given that exhausting all |N§ |! possible matchings to find
the optimal one is computationally infeasible, we signifi-
cantly simplify this computation by constraining the search-
ing space according to the inherent structure of molecules,
which are: 1) node degrees in drug-like molecule graphs
are usually less than 5, with most atoms having a degree
of 1 and few nodes having a degree of 4 (Patrick 2013); 2)
for nodes of degree 4, only 12 among the total 24 possi-
ble matchings are valid after considering chirality (Pattanaik
et al. 2020) (See Section 4.4 for more details).

After we obtain the optimal node matching, the bijective
edge matching can be trivially defined as: x** : £% — & s
such that the edge e,, € £ if and only if e,/ (y) € es’,
Then, with the defined node and edge matching x*, x** as
above, we compute ¢, and ¢ as:

1 . /
W Z mm(Xf,Xi*(u)).

ueNS

¢ns = (4)

1 . s s’
des = el D sim(EY, EY e (u)- )

ueNS

Chirality Characterization After we capture the
chemical-informative pattern of the neighborhood subgraph
around each atom by quantifying the above three different
aspects of similarity, our model is still chirality-insensitive,
i.e., it still cannot distinguish enantiomers (pairs of mirror-
imaged molecules that are non-superimposable, like our
left and right hands (McNaught, Wilkinson et al. 1997))
However, chirality is a key determinant of a molecule’s
biological activity (Sliwoski et al. 2012), which motivates
us to characterize the chirality of the molecule in the next.
According to the rule of basic chemistry, chirality can
only exist when the central atom has four unique neigh-
boring substructures. Therefore, we only characterize the
chirality for atom v where |N;°| = 4 and its four neigh-
boring substructures are different from each other. More
specifically, given the neighborhood subgraph of an atom S
forming the tetrahedron shown in Figure 4 where the four
unique neighboring atoms are N:¥ = {uy, us, us, us}, we
select u; without loss of generality as the anchor neigh-
bor to define the three concurrent sides of the tetrahedron
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further calculate the tetrahedral volume of S as:

1
gS:—*aSXbS~cs.

6 (6)

Similarly, we calculate 55/ for the kernel S’. Since the sign
of the tetrahedron volume of the molecule ¢ defines its ori-
entation (Sliwoski et al. 2012), if sgn(¢%) = —sgn(£5"),
with sgn(-) being the sign function, the four neighboring
subgraph S, S’ would be of opposite direction. Therefore,
by treating the kernel as the anchor and comparing its direc-
tion with the ones of two neighborhood subgraphs as:

655", ifsen(x®) = sen(x*)
_¢(S7 S,)7 ifsgn(XS) # Sgn(XS )7

we can distinguish two enantiomers and make the model
chirality-sensitive.

After we encode the chirality into the similarity com-
putation, our proposed molecular convolution could fully
capture the chemical pattern of the atom in terms of
its own property by ¢c(S,S’), its neighborhood prop-
erty ¢ns(S,5”), ¢es(S,S") and its chirality by the sign of
¢(S, S"). Since one kernel can only characterize one chemi-
cal pattern, we extend the above defined molecular convolu-
tion to the situation of multiple kernels in the next section.

%)

$(S,5") = { @)

4.2 Model Architecture

Suppose the set of K kernels at layer [ be S’ = {SIHE |,
we apply the proposed molecular convolution with the learn-
able molecular kernel S}l € S’ ! over the node representation
H'~! at the previous layer [ — 1 to obtain the node similarity
matrix at layer [ as ®' € RIVIXX:

I B T G )
#5051 eSS #(S0, " Sk

® = '
-1 11—1 -1 -1 1—1 -1
S(Sup 51T (8L 8T $(Sy Sk )

®)
where gb(Sf}:l,S,’Cl_l) defines the similarity between the
neighborhood subgraph around the atom v; and the k™ ker-
nel at layer [ — 1. We note that ¢(S~1, S71) is set to

0 if S, and S,'cl_1 have different degrees so that back-
propagation keeps the parameters in kernels of different de-
gree untouched.

The above molecular kernel convolution can only capture
the chemical pattern embedded in the 1-hop neighborhood
around each atom. To further discover the chemical pat-
tern embedded in the multi-hop neighborhood, we leverage
the message-passing and directly aggregate the calculated
neighborhood similarity ®' as:

H' = A®'. 9)

After recursively alternating between the molecular convo-
lution and the message-passing L layers, the final atom rep-
resentation H describes the chemical pattern up to L hops
away of each atom. We further apply a readout function to



integrate node presentations into the graph representation G
for each graph G as:

G = READOUT({HF|v; € V}) (10)

Here we employ global-sum pooling as our READOUT
function, which adds all nodes’ representations.

4.3 Model Optimization

From now, let the graph representation of GG; be G; and so
we apply the above process to get the representations for
all N labeled graphs in G. Then given the one-hot encoded
label matrix Y € RV*C the overall objective function of
MolKGNN is formally defined as:

1 N C R
L= —N ZZYiclogYicv
i=1 c=1

where Y = o(f(G)) and f(-) is a classifier, e.g., Multi-
Layer Perceptron followed by a softmax normalization o.

an

4.4 Model Computational Complexity

It may seem to be formidable to enumerate all possible
matchings described in Section 4.1. However, most nodes
only have one neighbor (e.g., hydrogen, fluorine, chlorine,
bromine and iodine). Take AID 1798 for example, 49.03%,
6.12%, 31.08% and 13.77% nodes are with one, two, three
and four neighbors among all nodes, respectively. For nodes
with four neighbors, only 12 out of 24 matchings need to be
enumerated because of chirality (Pattanaik et al. 2020).

Since the adjacency matrix of molecular graphs is sparse,
most GNNs incur a time complexity of O(|€|). And as ana-
lyzed above, the permutation is bounded by up to four neigh-
bors (12 matchings). Thus, finding the optimal matching has
a time complexity of O(1). The calculation of molecular
convolution is linear to the number of K kernels and hence
has a time complexity of O(K). Overall, our method takes
a computation time of O(|E|K).

5 Experiments

The experiments discussed in this section answer the follow-
ing research questions:

* RQ1: How does MolKGNN compare against existing
methods in a realistic drug discovery benchmark?

* RQ2: Do the learned kernels of MolKGNN align with
domain knowledge and provide further interpretability?

* RQ3: Does MolKGNN possess the expressiveness for
distinguishing chiral molecules?

5.1 A Realistic Drug Discovery Scenario

High-throughput screening (HTS) is the use of auto-
mated equipment to rapidly screen thousands to millions
of molecules for the biological activity of interest in the
early drug discovery process (Bajorath 2002). However, this
brute-force approach has low hit rates, typically around
0.05%-0.5%. QSAR models are trained on the results of
HTS experiments in order to screen additional molecules
virtually and prioritize these for acquisition (Mueller et al.
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Total # # Active  Avg. # of

Protein Target Graphs Labels Nodes (Edges)

GPCR
- 435008: Orexinl Receptor {218,156 233 45.14 (94.37)
:1798: M1 Muscarinic 61,832 187  43.60 (91.37)
Receptor Agonists
-435034: M1 Muscarinic 61,755 362  43.61 (91.41)
Receptor Antagonists

Ion Channel
+1843: Potassium Ion 301,490 172 44.41 (92.81)
Channel Receptor Kir2.1
2258: KCNQ2 Potassium (302 402 213 44.44 (92.88)
Channel
-463087: Cav3 T-type 100,874 703 43.75(91.57)
Calcium Channels
Transporter

-488997: Choline 302,303 252 44.46 (92.90)
Transporter

Kinase
-2689: Serine/Threonine 319,789 172 44.85(93.70)
Kinase 33

Enzyme
-485290: Tyrosyl-DNA 341,304 281  46.13 (96.50)
Phosphodiesterase

Table 1: Statistics of datasets used in the experiment.
Datasets are identified by their PubChem Assay ID (AID).

2010). Dataset challenges for constructing QSAR models in-
clude imbalance (many more inactive molecules) and con-
taining false positives/negatives (Baell and Holloway 2010).
Thus, for developing QSAR methods, curated high-quality
datasets are needed. Unfortunately, too often small, uncu-
rated, or unrealistic datasets are used, e.g., the commonly
used ogbg-molpcba (Hu et al. 2020), which had no prepro-
cessing to remove potential experimental artifacts (Ramsun-
dar et al. 2015). Another commonly-used large molecule
dataset is OGB-LSC PCQM4Mv2 (~ 3M molecules) (Hu
et al. 2021), but is of molecular properties instead of bi-
ological activities. Lastly, when assessing the performance
of QSAR models, a metric that bias the molecules with the
highest predicted activities is of interest as ultimately only
these will be acquired or synthesized and tested.

5.2 Datasets

PubChem (Kim et al. 2021) is a database supported by Na-
tional Institute of Health (NIH) that contains biological ac-
tivities for millions of drug-like molecules, often from HTS
experiments. However, the raw primary screening data from
PubChem have a high false positive rate (Butkiewicz et al.
2017, 2013). We benchmark our model using nine high-
quality HTS experiments from PubChem that cover all im-
portant protein classes for drug discovery (Butkiewicz et al.
2017, 2013), which are summarized in Table 1. The datasets
feature in the large data size, highly imbalanced labels, and
diverse protein targets.



PubChem AID | MolKGNN (ours) SchNet SphereNet DimeNet++ ChiRo KerGNN
435008 0.255 +0.014 0.187 £ 0.027 0.215 + 0.024 0.203 + 0.047 0.168 £+ 0.019 0.147 + 0.015
1798 0.174 +0.029 0.195 +0.025 | 0.196 £0.035 | 0.208 +0.035 | 0.165+0.040 | 0.078 £ 0.042
435034 0.227 + 0.022 0.246 £ 0.020 0.230 + 0.034 0.235 4+ 0.044 0.211 £ 0.023 0.179 + 0.045
1843 0.362 +0.033 0.358 £ 0.037 | 0.258 £0.048 | 0.284 +0.034 | 0.326 = 0.010 | 0.292 + 0.027
2258 0.301 £ 0.028 0.240 +0.037 | 0.380 £0.037 | 0.340+0.032 | 0.251 +0.010 | 0.195 + 0.020
463087 0.390 + 0.056 0.332 £ 0.022 0.399 £ 0.011 0.389 4+ 0.026 0.258 £ 0.019 0.150 £ 0.011
488997 0.303 4+ 0.027 0.319 £0.017 | 0.309 £0.029 | 0.315+0.011 | 0.1934+0.029 | 0.081 + 0.023
2689 0.415 + 0.020 0.324 £+ 0.020 0.401 £+ 0.016 0.367 +0.049 0.351 £+ 0.048 0.264 + 0.017
485290 0.498 +0.015 0.333 +0.047 | 0.450 £0.039 | 0.463 +0.040 | 0.295 4+ 0.068 | 0.223 + 0.026
Average 0.325 0.282 0.315 0.312 0.247 0.179
Avg. Rank 2.333 3.222 2.556 2.556 4.556 5.778

Table 2: Comparison of 1ogAUC g go1,0.1] between models. The performance is better when the value is higher. Reported are
the mean values over five runs, with standard deviation. Avg. Rank is the average model rank among all AIDs. This is our main

result since it uses a domain-related metric.

PubChem AID | MolKGNN (ours) SchNet SphereNet DimeNet++ ChiRo KerGNN
435008 0.836 = 0.012 0.820 £ 0.009 | 0.794 £0.026 | 0.787 +0.028 | 0.797 £0.015 | 0.806 + 0.017
1798 0.721 £ 0.027 0.707 £ 0.007 0.655 + 0.025 0.649 4+ 0.028 0.683 £+ 0.052 0.663 £+ 0.041
435034 0.816 +0.028 0.838 +0.009 | 0.836 £0.014 | 0.834+0.019 | 0.822+0.017 | 0.821 +0.016
1843 0.879 + 0.025 0.896 £+ 0.012 0.875 £ 0.021 0.857 £ 0.011 0.881 £+ 0.010 0.906 + 0.020
2258 0.806 +0.019 0.792 +0.020 | 0.801 £0.042 | 0.821+0.025 | 0.782+0.018 | 0.766 + 0.024
463087 0.895 + 0.003 0.910 £ 0.005 0.904 + 0.005 0.902 4+ 0.009 0.891 £ 0.004 0.859 + 0.009
488997 0.866 +0.018 0.831 +0.012 | 0.822 £0.017 | 0.839+0.023 | 0.8174+0.019 | 0.757 £+ 0.044
2689 0.906 + 0.019 0.905 £+ 0.021 0.867 £ 0.021 0.832 +0.016 0.919 £ 0.017 0.912 +0.013
485290 0.866 +0.012 0.893 +0.011 | 0.879 £0.021 | 0.884+0.016 | 0.816 +0.015 | 0.853 + 0.009
Avgerage 0.843 0.844 0.826 0.823 0.823 0.816
Avg. Rank 2.889 2.111 3.778 3.889 4.000 4.222

Table 3: Comparison of AUC between models. The performance is better when the value is higher. Reported are the mean
values over five runs, with standard deviation. Avg. Rank is the average model rank among all AIDs. This result is measured
by a general metric. Together with the result in Table 2, we show that a well-performing model measured by a general metric
could potentially perform badly in the application-related metric.

5.3 Baselines

We benchmark our method, MolIKGNN, in comparison to
five other methods. SchiNet (Schiitt et al. 2017), SphereNet
(Liu et al. 2021), DimeNet++ (Gallicchio and Micheli
2020), ChIRo (Adams, Pattanaik, and Coley 2021) and
KerGNN (Feng et al. 2022). The first four are GNNs
for molecular representation learning. The last one is a
GNN that is architecturally similar to ours. Another similar
work (Cosmo et al. 2021) is excluded from benchmarking
due to no publicly available code at the time of writing.

5.4 Evaluation Metrics

Two metrics are used to evaluate our methods specifically,
logAUCg.001,0.1], AUC :

e Logarithmic Receiver-Operating-Characteristic ~Area
Under the Curve with the False Positive Rate in [0.001,
0.1] (10gAUCg.001,0.1)): Ranged logAUC (Mysinger
and Shoichet 2010) is used because only a small per-
centage of molecules predicted with high activity can be
selected for experimental tests in consideration of cost
in a real-world drug campaign (Butkiewicz et al. 2017).
This high decision cutoff corresponds to the left side
of the Receiver-Operating-Characteristic (ROC) curve,
i.e., those False Positive Rates (FPRs) with small values.
Also, because the threshold cannot be predetermined,
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the area under the curve is used to consolidate all
possible thresholds within a certain FPR range. Finally,
the logarithm is used to bias towards smaller FPRs.
Following prior work (Mendenhall and Meiler 2016;
Golkov et al. 2020), we choose to use logAUC(.001,0.1]-
A perfect classifier achieves a logAUC|g 001,0.1) of 1,
while a random classifier reaches a logAUCg gg1,0.1) Of
around 0.0215, as shown below:
—1 w

foz%)iol zdlogyyx _ ffg_llo du ~ 0.0215

Jo.001 1dlogyg J 5 1du
Receiver-Operating-Characteristic Area Under the Curve
(AUC): We include AUC since this has historically been
used as a general evaluation metric for graph classifica-
tion (Wu et al. 2018). Comparison with AUC also high-
lights the fact that overall performance/ranking of meth-
ods according to AUC may not align well with that of the
domain specific evaluation metric, i.e., logAUC|9.001,0.1]-

5.5 Training Details

The datasets are split into 80%/10%/10% for training, val-
idation and testing, respectively. Due to the large size of
the datasets and limited computation resources, we reduce
our training sets. We use 10,000 randomly selected inactive-
labeled samples while keeping all the active-labeled samples
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Figure 5: Visualization of a learned kernel of MolKGNN
when trained on AID 2689.

for training , following (Mendenhall and Meiler 2016). The
validation and testing sets remain the same. More training
details can be found in the supplementary material.

5.6 Result

From Table 2, we can see MolKGNN achieves superior re-
sults in recovering the active molecules with a high decision
threshold. This demonstrates the applicability of MoIKGNN
in a real-world scenario. KerGNN has the worst perfor-
mance, which aligns with our arguments in Section 2.1 that
semantic similarity is more useful than structural in drug
discovery. Moreover, we find MolKGNN also performs on
par with other GNN in terms of AUC (see Table 3), which
demonstrates its potential applicability beyond drug discov-
ery in a general setting. It is worth noting that different rank-
ings of models are observed in the two tables. This demon-
strates that a generally good performing model measured by
AUC could potentially perform badly in a specific false pos-
itive rate region. Additionally, it highlights the ability of the
proposed model to perform well in the application-related
metric and indicates its practical significance. Finally the re-
sults prompt us to wonder if 3D model can indeed process
more information than 2.5D model. The supplementary ma-
terial contains a discussion on 2.5D vs. 3D models.

5.7 Investigation of Interpretability

We train an autoencoder-like architecture for interpret-
ing kernels. The encoder is the same as the one used in
MolKGNN to convert node features into the node embed-
ding via batch normalization. The decoder converts the node
embedding back to the corresponding atomic number. This
encoder can be used to translate the node embedding in the
kernels into atomic numbers. Currently we only examine the
first layer and the node attributes of the kernels, but our ker-
nels offer the potentials for retrieving more complicated pat-
tern and we leave the investigation of that for future works.
In Figure 5, the learned pattern shows a center atom of
carbon surrounded by three fluorine and another carbon. Ex-
amining the training set reveals several molecules displaying
this pattern. This highlights the interpretability of our model
and the finding corresponds to the domain knowledge: the
pattern is known as the trifluoromethyl group in medicinal
chemistry and has been used in several drugs (Yale 1958).

5.8 Ability to Distinguish Chirality

We use the CHIRALI1 dataset (Pattanaik et al. 2020)
that contains 102,389 enantiomer pairs for a single 1,3-
dicyclohexylpropane skeletal scaffold with one chiral cen-
ter. The data is labeled as R or S stereocenter and we use

14362

Z

Soooo 000000

logAUCp.001,0.1
000000 — 19 1919 1910
RSIVER 0O o

AUC

)
3
(=2}

2 345 10t 20
Kernel Numbers

Figure 6: (A) Ablation study result for ¢(S, S’) components
using AID 435008. Reported are average values over three
runs, with standard deviation. (B) Performance for different
kernel numbers using AID 435008. The number shown is
applied to kernels of all degrees. Results are average values
over three runs, with standard deviation.

accuracy to evaluate the performance. For comparison, we
use GCN (Kipf and Welling 2016) and a modified version
of our model, MolKGNN-NoChi, that removes the chiral-
ity calculation module. Our experiments observed GCN and
MolKGNN-NoChi achieve 50% accuracy while MolIKGNN
achieves nearly 100%, which empirically demonstrates our
proposed method’s ability to distinguish chiral molecules.

5.9 Ablation Study

Component of ¢(S,S’) We conduct an ablation study on
the three compnents of ¢(.S, S"), i.e., Pcs, Pns, Pes- From Fig-
ure 6(A), we observe that the removal of any of the com-
ponents has a negative impact on logAUCg o1,0.1)- The im-
pact is bigger for logAUCg g01,0.1] than AUC in terms of the
percentage of performance change. Note that in some cases
such as the removal of ¢, there is an increase in perfor-
mance according to AUC, but this would significantly hinder
the logAUCg.001,0.1] metric.

Kernel Number An ablation study is conducted to study
the impact of kernel numbers (Figure 6(B)). When the num-
ber of kernels is too small (kernel per degree< 5), it greatly
impacts the performance. However, once it is large enough
to a certain point, a larger number of kernels has little impact
on the performance.

6 Conclusion

In this work, we introduce a new GNN model, MolKGNN,
to address the QSAR modeling problem. MolKGNN utilizes
a newly-designed molecular convolution, where a molecu-
lar neighborhood is compared with a kernel and outputs a
similarity score. Well-curated datasets that consist of experi-
mental HTS data from diverse protein target classes are used
for the evaluation. The highly-imbalanced datasets high-
light the scarcity of positive signals in this real-world prob-
lem (Wang et al. 2022). Evaluation using domain-related
(logAUC.001,0.1)) metric demonstrates the practical value
of MolKGNN in drug discovery while performance mea-
sured by a general metric (AUC) is also provided for com-
parison. Moreover, this paper provides a theoretical justifi-
cation and experimental demonstration that MolKGNN is
able to distinguish chiral molecules while providing inter-
pretability for its results.
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