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Abstract—Link prediction is a fundamental problem for
network-structured data and has achieved unprecedented success
in many real-world applications. Despite the significant progress
being made towards improving its performance by characteriz-
ing underlined topological patterns or leveraging representation
learning, few works have focused on the imbalanced performance
among nodes of different degrees. In this paper, we propose a
novel problem, degree-related bias and evaluation bias, on link
prediction with an emphasis on recommender system applica-
tions. We first empirically demonstrate the performance differ-
ence among nodes with different degrees and then theoretically
prove that Recall is an unbiased evaluation metric compared with
F1, NDCG and Precision. Furthermore, we show that under the
unbiased evaluation metric Recall, low-degree nodes tend to have
higher performance than high-degree nodes in link prediction.

Index Terms—Link prediction, degree-related bias, the node-
centric evaluation metric

I. INTRODUCTION

Graph-structured data is omnipresent in various fields, such

as biology, chemistry, social media, and transportation [1], [2].

Link prediction, as one of the most important graph-related

tasks, has become a central problem and finds its applications

in predicting drug interactions, recovering knowledge graphs,

and recommendations [3], [4].

As well-known in many graphs (e.g. citation graphs and

social networks, etc.), node degree usually follows a power-

law distribution. While the degree of major nodes is relatively

small, few nodes on the long tail have significantly high-

degree. Existing works [5]–[7] have shown that such power-

law distributed node degree may hurt the performance of

GNNs in node classification. Specifically, nodes with higher

degrees are much more likely to own labeled neighbors

compared with lower-degree ones and by message-passing

mechanism, these nodes participate more frequently in the

optimization and their learned representations are more pre-

dictive of their ground-truth labels. However, we argue that

this conclusion does not hold in the task of link prediction.

On one hand, in link prediction, we are not given any

golden label and hence message-passing may not cause im-

balanced training/optimization between nodes of high and low

degree. On the other hand, even given golden labels in link

prediction, then each unique node would correspond to a

unique label (we aim to correctly classify all neighbors of this

node to be this unique class). Therefore, the more frequent

participation of high-degree nodes in the optimization by

message-passing, the more likely their representations would

be optimized towards pairing with so many unrelated nodes,

0.0

0.2

0.4

0.6

N
D

C
G

@
20 MF

NGCF
LightGCN CAGCN-jc CAGCN*-jc

0.00

0.05

0.10

0.15

R
ec

al
l@

20

[0, 100)
[100, 200)

[200, 300)
[300, 400)

[400, 500)
[500, 600)

[600, Inf)

Degree Group

0.00

0.05

0.10

0.15
C

IR
-s

c

0

5

10 C
ou

nt
 (L

og
)

Fig. 1. The performance of each model w.r.t. node degree on Gowalla. We
can clearly see that Recall decreases as node degree increases while NDCG
increases as node degree increases. CIR denotes the common interacted ratio,
which measures how nodes’ neighbors are connected with each other through
higher-order paths. See [4] for further definition.

and hence their performance would decrease. As shown in

Figure 1, Recall@20 decreases when node degree increases,

which aligns with our argument. Note that because Normalized

Discounted Cumulative Gain (NDCG), unlike Recall, is a

biased evaluation metric (as justified later in Section II-A),

we observe that NDCG@20 increases as the node degree

increases.

II. ANALYZING BIAS IN LINK PREDICTION

Let G = (V, E) be an undirected graph, where V =
{v1, v2, ..., vn} is the set of nodes with n = |V| and E ⊆ V×V
is the set of edges with m = |E|. Given the historical edges Ē
that we have observed, most link predictors expect to predict

the incoming edges Ê with E = Ē ∪ Ê by learning a mapping

V × V → S ∈ R
n×n, where Sij ∈ R represents how likely

a link will form between vi and vj . The performance of each

node vi is evaluated by comparing the level of the alignment

between its ground-truth 1-hop neighbors N̂ 1
i and its predicted

1-hop neighbors Ñ 1
i . Specifically, for each node vi, we sort its

preference scores over all nodes Si ∈ R
n and select the top-K

items to form its predicted 1-hop neighbors Ñ 1
i = {vφk

i
}Kk=1

where φk
i denotes vi’s k

th preferred item selected according to

the rank of Si. Assuming K < |N̂ 1
i |, then we formulate four

commonly-used evaluation metrics Recall(R), Precision(P), F1

and NDCG(N) as:
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R@Ki =
|N̂ 1

i ∩ Ñ 1
i |

|N̂ 1
i |

, P@Ki =
|N̂ 1

i ∩ Ñ 1
i |

K
(1)

F1@Ki = 2
P@K · R@K

R@K + P@K
=

2|N̂ 1
i ∩ Ñ 1

i |
K + |N̂ 1

i |
(2)

N@Ki =

∑K
k=1

1[v
φk
i
∈(N̂ 1

i ∩ ˜N 1
i )]

log2(k+1)∑
k=1

K 1
log2(k+1)

(3)

A. Theoretical Analysis

Before analyzing bias in link prediction with the evaluation

metrics defined above, we first theoretically prove that Recall

is an unbiased evaluation metric while Precision, F1, and

NDCG are biased ones. Assuming that |N̂ 1
i ∩ Ñ 1

i | follows

hyper-geometric distribution for any node vi and |N̂ 1
i | = d,

the relationship between the expectation of each evaluation

and the node activity d is derived as:

1) Recall:

E(R@K|d) = K

n
,

∂E(R@K|d)
∂d

= 0, (4)

2) Precision:

E(P@K|d) = d

n
,

∂E(P@K|d)
∂d

= 1, (5)

3) F1:

E(F1@K|d) = 2K

n

d

K + d
,
∂E(F1@K|d)

∂d
=

2K2

n

1

(K + d)2
∈ (0, 1),

(6)

4) NDCG:

E(N@K|d) = d

n
,

∂E(N@K|d)
∂d

= 1. (7)

For brevity, we leave out the detailed derivations for Eq. (4)-

(7). Obviously, Precision, F1, and NDCG increase as the node

degree d increases and hence will lead to bias in evaluating

the degree-related bias in link prediction. Note that although

the node degree d is defined to be the size of the ground-

truth neighborhood, the conclusion still holds since typically,

nodes with high degrees in training data would also have high

degrees in testing data assuming no degree distribution shift.

For example, on social networks, if the users are highly-active

on the platform in the last year, it is safe to assume they will

maintain their high-level activity in the following year [8].

B. Empirical Analysis

We further empirically verify the above observation by

leveraging an untrained link predictor to calculate the corre-

sponding evaluation metric. More specifically, for each node

vi, we randomly select K nodes from V and check whether

the selected K nodes come from N̂i. To approximate the

expectation with less error, we average the results over 200

runs. Straightforwardly, any untrained model should output

exactly the same performance for each individual. However, it

is clearly seen in Figure 2 that when evaluating with Precision,

F1, and NDCG, the performance still increases as the node
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Fig. 2. Performance under each metric w.r.t. node degrees on Gowalla.

degree increases, which is consistent with what we derive

in Section II-A and further demonstrates the evaluation bias

embedded in Precision, F1, and NDCG.

III. CONCLUSION

In this paper, we propose a novel issue, degree-related bias

and evaluation bias, in link prediction. We first empirically

demonstrate the imbalanced performance of link prediction on

nodes with different degrees, which disclose the degree-related

bias in link prediction. Then, we theoretically analyze the

bias of different evaluation metrics and prove that NDCG, F1

and Precision are all biased towards high-degree nodes while

Recall is the only unbiased evaluation metric. When evaluating

under the unbiased metric Recall, we finally conclude that

low-degree nodes tend to have higher performance in link

prediction than high-degree nodes. In future work, we plan

to focus on degree-related bias from the perspective of local

clustering coefficient, and then more generally on fair graph

representation learning [6], [9].
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