
Collaboration-Aware Graph Convolutional Network for
Recommender Systems

Yu Wang Yuying Zhao
yu.wang.1@vanderbilt.edu yuying.zhao@vanderbilt.edu

Vanderbilt University Vanderbilt University

Yi Zhang Tyler Derr
yi.zhang@vanderbilt.edu derr.tyler@vanderbilt.edu
Vanderbilt University Vanderbilt University

ABSTRACT
Graph Neural Networks (GNNs) have been successfully adopted
in recommender systems by virtue of the message-passing that
implicitly captures collaborative efect. Nevertheless, most of the
existing message-passing mechanisms for recommendation are
directly inherited from GNNs without scrutinizing whether the
captured collaborative efect would beneft the prediction of user
preferences. In this paper, we frst analyze how message-passing
captures the collaborative efect and propose a recommendation-

oriented topological metric, Common Interacted Ratio (CIR), which
measures the level of interaction between a specifc neighbor of
a node with the rest of its neighbors. After demonstrating the
benefts of leveraging collaborations from neighbors with higher
CIR, we propose a recommendation-tailored GNN, Collaboration-
Aware Graph Convolutional Network (CAGCN), that goes beyond
1-Weisfeiler-Lehman(1-WL) test in distinguishing non-bipartite-
subgraph-isomorphic graphs. Experiments on six benchmark datasets
show that the best CAGCN variant outperforms the most represen-
tative GNN-based recommendation model, LightGCN, by nearly
10% in Recall@20 and also achieves around 80% speedup. Our
code/supplementary is at https://github.com/YuWVandy/CAGCN.

CCS CONCEPTS
• Computing methodologies → Machine learning .

KEYWORDS
Recommender systems, graph neural networks, collaborative efect
ACM Reference Format:
Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. 2023. Collaboration-Aware
Graph Convolutional Network for Recommender Systems. In Proceedings of
the ACM Web Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.
3583229

1 INTRODUCTION
Recommender systems aim to alleviate information overload by
helping users discover items of interest [2, 47] and have been widely

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583229

deployed in real-world applications [31]. Given historical user-item
interactions (e.g., click, purchase, review, and rate), the key is to
leverage the collaborative efect [3, 11, 37] to predict how likely
users will interact with items. A common paradigm for modeling
collaborative efect is to frst learn embeddings of users/items capa-
ble of recovering historical user-item interactions and then perform
top-K recommendation based on the pairwise similarity between
the learned user/item embeddings.

Since historical user-item interactions can be naturally repre-
sented as a bipartite graph with users/items being nodes and inter-
actions being edges [9, 16, 37] and given the unprecedented success
of GNNs in learning node representations [12, 13, 20, 53], recent re-
search has started to leverage GNNs to learn user/item embeddings
for the recommendation. Two pioneering works NGCF [37] and
LightGCN [9] leverage graph convolutions to aggregate messages
from local neighborhoods, which directly injects the collaborative
signal into user/item embeddings. More recently, [1, 44] explore the
robustness and self-supervised learning [40] of graph convolution
for recommendation. However, the message-passing mechanisms
in all previous recommendation models are directly inherited from
GNNs without carefully justifying how collaborative signals are cap-
tured and whether the captured collaborative signals would beneft
the prediction of user preference. Such ambiguous understanding
on how the message-passing captures collaborative signals would
pose the risk of learning uninformative or even harmful user/item
representations when adopting GNNs in recommendation. For ex-
ample, [4] shows that a large portion of user interactions cannot re-
fect their actual purchasing behaviors. In this case, blindly passing
messages following existing styles of GNNs could capture harm-

ful collaborative signals from these unreliable interactions, which
hinders the performance of GNN-based recommender systems.

To avoid collecting noisy or even harmful collaborative signals
in message-passing of traditional GNNs, existing work GTN [4]
proposes to adaptively propagate user/item embeddings by adjust-
ing the weight of edges based on items’ similarity to users’ main
preferences (i.e., the trend). However, such similarity is computed
based on the learned embeddings that still implicitly encode noisy
collaborative signals from unreliable user-item interactions. Worse
still, calculating edge weights based on user/item embeddings along
the training on the fy is computationally prohibitive and hence
prevents the model from being deployed in industrial-level rec-
ommendations. SGCN [1] attaches the message-passing with a
trainable stochastic binary mask to prune noisy edges. However,
the unbiased gradient estimator increases the computational load.

91

https://github.com/YuWVandy/CAGCN
https://doi.org/10.1145/3543507.3583229
https://doi.org/10.1145/3543507.3583229
https://doi.org/10.1145/3543507.3583229
mailto:derr.tyler@vanderbilt.edu
mailto:yuying.zhao@vanderbilt.edu
mailto:permissions@acm.org
mailto:yi.zhang@vanderbilt.edu
mailto:yu.wang.1@vanderbilt.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583229&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Despite the fundamental importance of capturing benefcial col-
laborative signals, the related studies are still in their infancy. To
fll this crucial gap, we aim to demystify the collaborative efect
captured by message-passing and develop new insights towards
customizing message-passing for recommendations. Furthermore,
these insights motivate us to design a recommendation-tailored
GNN, Collaboration-Aware Graph Convolutional Network(CAGCN),
that passes neighborhood information based on their Common In-
teracted Ratio (CIR) via the Collaboration-Aware Graph Convolu-
tion (CAGC). Our major contributions are listed as follows:

• Novel Perspective on Collaborative Efect: We demystify
the collaborative efect by analyzing how message-passing helps
capture collaborative signals and when the captured collaborative
signals are benefcial in computing users’ ranking over items.

• Novel Recommendation-tailored Topological Metric: We
then propose a recommendation-tailored topological metric, Com-

mon Interacted Ratio (CIR), and demonstrate the capability of
CIR to quantify the benefts of the messages from neighborhoods.

• Novel Convolution beyond 1-WL for Recommendation:
We integrate CIR into message-passing and propose a novel
Collaboration-Aware Graph Convolutional Network (CAGCN).
Then we prove that it can go beyond 1-WL test in distinguishing
non-bipartite-subgraph-isomorphic graphs, show its superiority
on real-world datasets including two newly collected ones, and
provide an in-depth interpretation of its advantages.

Next, we comprehensively analyze the collaborative efect captured
by message-passing and propose CIR to measure whether the cap-
tured collaborative efect benefts the prediction of user preferences.

2 ANALYSIS ON COLLABORATIVE EFFECT
Let G = (V, E) be the user-item bipartite graph, where the node
set V = U ∪ I includes the user set U and the item set I. Fol-
lowing previous work [9, 19, 37], we only consider the implicit
user-item interactions and denote them as edges E where ��� rep-

resents the edge between node � and �. The network topology
is described by its adjacency matrix A ∈ {0, 1}|V |× |V |

, where
A�� = 1 when ��� ∈ E, and A�� = 0 otherwise. Let N�� denote the
set of observed neighbors that are exactly �-hops away from � and
S� = (VS�

, ES�
) be the neighborhood subgraph [43] induced in G

by Ne1 = N�
1 ∪ {�}. We use ��

�� to denote the set of shortest paths �
of length � between node � and � and denote one of such paths as

�� . Note that �� = ∅ if it is impossible to have a path between � �� ��

and � of length � , e.g., �
11

1 = ∅ in an acyclic graph. Furthermore,

we denote the initial embeddings of users/items as E0 ∈ R(�+�)×�
0

where e0 = E�
0
and �� are the node �’s embedding and degree. �

Following [9, 37], each node has no semantic features but purely
learnable embeddings. Therefore, we remove the nonlinear trans-
formation by leveraging LightGCN [9] as the canonical architec-
ture and exclusively explore the collaborative efect captured by
message-passing. LightGCN passes messages from user �/item �’s
neighbors within �-hops to �/�:

∑ ∑
� +1 � �+1 � e� = ��

−0.5 � �
−0.5e� , e� = ��

−0.5 ��
−0.5e� , (1)

� ∈N1 � ∈N1
� �

Wang, et al.

∀� ∈ {0, ..., �}. The propagated embeddings at all layers including
the original embedding are aggregated together via mean-pooling: ∑� �∑

1 � 1 � e� = e� , e� = e� , ∀� ∈ U, ∀� ∈ I (2)(� + 1) (� + 1)
� =0 � =0

In the training stage, for each observed user-item interaction (�, �),
LightGCN randomly samples a negative item �−

that � has never
interacted with before, and forms the triple (�, �, �−), which collec-
tively forms the set of observed training triples O. After that, the
ranking scores of the user over these two items are computed as

⊤ ⊤��� = e� e� and ���− = e� e� − , which are fnally used in optimizing
the pairwise Bayesian Personalized Ranking (BPR) loss [27]:∑

L
BPR = − ln � (��� − ���−), (3)

(�,�,� −) ∈O

where � (·) is the Sigmoid function, and we omit the �2 regulariza-

tion here since it is mainly for alleviating overftting and has no
infuence on the collaborative efect captured by message passing.

Under the above LightGCN framework, we expect to answer the
following two questions:

• �1: How does message-passing capture the collaborative efect
and leverage it in computing users’ ranking?

• �2: When do collaborations captured by message-passing beneft
the computation of users’ ranking over items?

Next, We address �1 by theoretically deriving users’ ranking over
items under the message-passing framework of LightGCN and ad-
dress �2 by proposing the Common Interacted Ratio (CIR) to mea-

sure the benefts of leveraging collaborations from each neighbor
in computing users’ ranking. The answers to the above two ques-
tions further motivate our design of Collaboration-Aware Graph
Convolutional Network in Section 3.

2.1 How does message-passing capture
collaborative efect?

The collaborative efect occurs when the prediction of a user’s pref-
erence relies on other users’ preferences or items’ properties [28].
Therefore, to answer �1, we need to seek whether we leverage
other nodes’ embeddings in computing a specifc user’s ranking
over items. In the inference stage of LightGCN, we take the inner
product between user �’s embedding and item �’s embedding after
�-layers’ message-passing to compute the ranking as1: ∑� ∑ ∑� ∑� ∑ ∑�

�� 0 0
�� = (��2 �

�
��
2 e�)

⊤(��2 �
�
��
2 e�), (4)

�1=0 �
1 �2=�1 �1 =0 �

1 �2 =�1� ∈N � ∈N � Í Î �2
where ��2 = �

2 �
2 �

2 � −0.5�−0
�
.5
(�
�2 = 0 if � =

�� � ∈� ��� ∈� � � �� ��
�� �� ��

∅) denotes the total weight of all paths of length �2 from � to �,
N�

0 = {�} and specifcally, ���
0 = 1. ��2 is the weight measuring

contributions of propagated embeddings at layer �2. Thus, based
on Eq. (4), we present the answer to �1 as �1: �-layer LightGCN-
based message-passing captures collaborations between pairs of nodes
{(�, �) | � ∈

Ð�
=0 N�

� , � ∈
Ð�

=0 N
� }, and the collaborative strength of

� � �
0 0each pair is determined by 1) e ⊤ e� : embedding similarity between
�

� and � , 2) {�� }�
=0 ({�

� }�
=0
): weight of all paths of length � to �

�� � �� �
from � to � (� to �), and 3) {�� }�

=0
: the weight of each layer.

�

1
Detailed derivation is attached in Appendix A.2.

92

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Figure 1: In (a)-(b), �1 has more interactions (paths) with (to) �’s neighborhood than �4 and hence is more representative of �’s
purchasing behaviors than �4. In (c), we quantify CIR between �1 and � via the paths (and associated nodes) between �1 and N1

� .

2.2 When is the captured collaborative efect
benefcial to users’ ranking?

Although users could leverage collaborations from other users/items
as demonstrated above, we cannot guarantee all of these collabo-
rations beneft the prediction of their preferences. For example, in
Figure 1(a)-(b), �’s interacted item �1 has more interactions (paths)
to �’s neighborhoods than �4 and hence is more representative of �’s
purchasing behaviors [1, 4]. For each user �, we propose the Com-

mon Interacted Ratio to quantify the level of interaction between
each specifc neighbor of � and �’s whole item neighborhood:

Defnition 1. Common Interacted Ratio (CIR): For any item
� ∈ N�

1
of user �, the CIR of � around � considering nodes up to b� (b� + 1)-hops away from �, i.e., �� (�), is defned as the average

interacted ratio of � with all neighboring items of � in N�
1
through

paths of length ≤ 2b�: ∑ ∑ ∑
�b 1 �b

1
�� (�) = �2� , (5)

|N�
1 | � ({N1 |� ∈ �2� })

� ∈N1 �=1 � 2� 2� � �� ∈� � �� ��

∀� ∈ N�
1 , ∀� ∈ U, where {N1 |� ∈ �2� } represents the set of the

� ��

1-hop neighborhood of node � along the path �2� from node �
��

to � of length 2� including �, � . � is a normalization function to
diferentiate the importance of diferent paths in �2�

and its value
��

depends on the neighborhood of each node along the path �2�
�� . �

2�

is the importance of paths of length 2� . b�
As shown in Figure 1(c), �� (�1) is decided by paths of lengthÍ

2 to 2b�. By confguring diferent b� and � , 1
�
��
2� ∈�2

��
�
� ({N1 |� ∈� 2� })

� ��

could express many graph similarity metrics [15, 17, 21, 30, 52] and
we discuss them in Appendix A.1. For simplicity, henceforth we de-b�
note �� (�) as �� (�). We next empirically verify the importance of
leveraging collaborations from neighbors with higher CIR by incre-
mentally adding edges into an initially edge-less graph according
to their CIR and visualizing the performance change. Specifcally,
we consider the performance change in two settings, retraining and
pretraining, which are visualized in Figure 2 and 3, respectively. In
both of these two settings, we iteratively cycle each node and add
its corresponding neighbor according to the CIR until hitting the
budget. Here we consider variants of CIR that we later defne in
Section 4.1 with further details in Appendix A.1.

Figure 2: The training loss (left) is lower and the performance
(right) is higher when adding edges according to the variant
CIR-lhn (Leicht Holme Nerman) than adding randomly un-
der the same addition budget. Detailed experimental settings
and more results are provided in Appendix A.5.1.

For the re-training setting, we frst remove all observed edges in
the training set to create the edgeless bipartite graph and then in-
crementally add edges according to their CIR and retrain user/item
embeddings. In Figure 2, we evaluate the performance on the newly
constructed bipartite graph under diferent edge budgets. Clearly,
the training loss/performance becomes lower/higher when adding
more edges because message-passing captures more collaborative
efects. Furthermore, since edges with higher CIR connect neigh-
bors with more connections to the whole neighborhood, optimizing
embeddings of nodes incident to these edges pull the whole neigh-
borhood closer and hence leads to the lower training loss over neigh-
borhoods’ connections, which causes the overall lower training loss
in Figure 2(a). In Figure 2(b), we observe that under the same adding
budget, adding according to CIRs achieves higher performance than
adding randomly. It is because neighbors with higher interactions
with the whole neighborhood are more likely to have higher in-
teractions with neighbors to be predicted (We empirically verify
this in Table 5.). Then for each user, maximizing its embedding
similarity to its training neighbors with higher CIR will indirectly
improve its similarity to its to-be-predicted neighbors, which leads
to lower population risk and higher generalization/performance.

93

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Wang, et al.

Figure 3: The performance of adding edges according to CIR
variants generally increases faster than adding randomly
after pre-training. See Appendix A.5.2 for more results.

For the pre-training setting, we frst pre-train user/item em-

beddings on the original bipartite graph and then propagate the
pre-trained embeddings on the newly constructed bipartite graph
under diferent edge budgets. This setting is more realistic since
in the real world, with the exponential interactions streamingly
coming in [36] while the storage space is limited, we are forced to
keep only partial interactions and the pre-trained user/item embed-

dings. Figure 3 demonstrates that under the same adding budget,
keeping edges according to CIR leads to higher performance than
keeping randomly, which further verifes the efectiveness of CIR in
quantifying the edge importance. An interesting observation is that
adding more edges cannot always bring performance gain as shown
in Figure 3(a) when the ratio of added edges is between 0%-20%. We
hypothesize there are two reasons. From network topology, only
when edges are beyond a certain level can the network form a giant
component so that users could receive enough neighborhood infor-
mation. Secondly, from representation learning, more nodes would
have inconsistent neighborhood contexts between the training and
the inference when only a few edges are added. Such inconsistent
neighborhood context would compromise the performance and
will be alleviated when more edges are added as shown later in
Figure 3(a). Furthermore, diferent CIR variants cause diferent in-
creasing speeds of performance. For example, sc is faster on Loseit
in Figure 3(a) while lhn is faster on Amazon in Figure 3(b). Except
for the cn, jc/sc/lhn lead to faster improvement than the random
one, which highlights the potential of CIR in devising cost-efective
strategies for pruning edges in the continual learning [35].

From the above analysis, we summarize the answer �2 to �2 as:
Leveraging collaborations from �’s neighboring node � with higher
CIR �� (�) would cause more benefts to �’s ranking.

3 COLLABORATION-AWARE GRAPH
CONVOLUTIONAL NETWORKS

The former section demonstrates that passing messages according
to neighbors’ CIR is crucial in improving users’ ranking. This moti-

vates us to propose a new graph convolution operation, Collaboration-
Aware Graph Convolution(CAGC), which passes node messages
based on the benefts of their provided collaborations. Furthermore,
we wrap the proposed CAGC within LightGCN and develop two
CAGC-based models.

3.1 Collaboration-Aware Graph Convolution
The core idea of CAGC is to strengthen/weaken the messages passed
from neighbors with higher/lower CIR to center nodes. To achieve
this, we compute the edge weight as: (

�� (�), if A� � > 0
�� � =

= 0
, ∀�, � ∈ V (6)

0, if A� �

where �� (�) is the CIR of neighboring node � centering around � .
Note that unlike the symmetric graph convolution D−0.5AD−0.5

used in LightGCN, here � is unsymmetric. This is rather inter-
pretable: the interacting level of node � with �’s neighborhood is
likely to be diferent from the interacting level of node � with � ’s
neighborhood. We further normalize � and combine it with the
LightGCN convolution: ∑

�� � � +1 � e = �(�� Í , �−0.5�−0.5)e� , ∀� ∈ V (7)� � �
� ∈N1 ���

� ∈N1 �
�

where �� is a coefcient that varies the total amount of messages
fowing to node � and controls its embedding magnitude [24]. � is a
function combining the edge weights computed based on CIR and
LightGCN. We could either simply set � as the weighted summation
of these two propagated embeddings or learn � by parametrization.
Next, we prove that for certain choices of �, CAGC can go beyond
1-WL in distinguishing non-bipartite-subgraph-isomorphic graphs.
First, we prove the equivalence between the subtree-isomorphism
and the subgraph-isomorphism in bipartite graphs:

Theorem 1. In bipartite graphs, two subgraphs that are subtree-
isomorphic if and only if they are subgraph-isomorphic2 .

Proof. We prove this theorem in two directions. Firstly (=⇒),
we prove that in a bipartite graph, two subgraphs that are subtree-
isomorphic are also subgraph-isomorphic by contradiction. Assum-

ing that there exists two subgraphs S� and S� that are subtree-
isomorphic yet not subgraph-isomorphic in a bipartite graph, i.e.,
S� �������� S� and S� ��������ℎ S� . By defnition of subtree-

� �
isomorphism, we trivially have e� = e

ℎ (�) , ∀� ∈ VS�
. Then to

guarantee S� ��������ℎ S� and also since edges are only allowed
to connect � and its neighbors N�

1
in the bipartite graph, there must

exist at least an edge ��� between � and one of its neighbors � ∈ N1
�

such that ��� ∈ ES�
, �ℎ (�)ℎ (�) ∉ ES� , which contradicts the as-

sumption that S� �������� S� . Secondly (⇐=), we can prove that in
a bipartite graph, two subgraphs that are subgraph-isomorphic are
also subtree-isomorphic, which trivially holds since in any graph,
subgraph-isomorphism leads to subtree-isomorphism [43]. □

Since 1-WL test can distinguish subtree-isomorphic graphs [43],
the equivalence between these two isomorphisms indicates that
in bipartite graphs, both of the subtree-isomorphic graphs and
subgraph-isomorphic graphs can be distinguished by 1-WL test.
Therefore, to go beyond 1-WL in bipartite graphs, we need to pro-
pose a novel graph isomorphism, bipartite-subgraph-isomorphism
in Defnition 2, which is even harder to be distinguished than the
subgraph-isomorphism by 1-WL test.

2
Defnitions of subtree-/subgraph-isomorphism are in Supplementary B.4 [43].

94

https://github.com/YuWVandy/CAGCN/blob/main/supplementary.pdf

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Defnition 2. Bipartite-subgraph-isomorphism: S� and S� are
bipartite-subgraph-isomorphic, denoted as S� ��� −�������ℎ S� , if
there exists a bijective mapping ℎ : Ne�

1 ∪ N2 → Ne1 ∪ N2
such� � �

that ℎ(�) = � and ∀�, � ′ ∈ Ne�
1 ∪N�

2
, ��� ′ ∈ E ⇐⇒ �ℎ (�)ℎ (� ′) ∈ E

� � � �
and e� = e = e .

ℎ (�) , e� ′ ℎ (� ′)

Lemma 1. If � is multilayer perceptron (MLP), then we have that e � � �({(�� �� � , e) | � ∈ N1}, {(� −0.5� −0.5 , e) | � ∈ N1}) is injective.
� � � � � �

Proof. If we assume that all node embeddings share the same
discretization precision, then embeddings of all nodes in a graph
can form a countable set H . Similarly, for each edge in a graph, its
CIR-based weight �e� � and degree-based weight � −0.5�−0.5

can also
� �

form two diferent countable sets W1, W2 with |W1 | = |W2 |. Then
P1 = {�e� � e� |�e� � ∈ W1, e� ∈ H}, P2 = {� −0.5�

�
−0.5e� |� −0.5�

�
−0.5 ∈

� �
W2, e� ∈ H} are also two countable sets. Let �1, �2 be two multi-

sets containing elements from P1 and P2, respectively, and |�1 | =
|�2 |. Then by Lemma 1 in [43], there exists a function � such that
� (�1, �2) =

Í
�1 ∈�1,�2 ∈�2

� (�1, �2) is unique for any distinct pair of
multisets (�1, �2). Since the MLP-based g is a universal approxima-

tor [45] and hence can learn � , we know that � is injective. □

Theorem 2. Let M be a GNN with sufcient number of CAGC-
based convolution layers defned by Eq. (7). If � is MLP, then M is
strictly more expressive than 1-WL in distinguishing subtree-isomorphic
yet non-bipartite-subgraph-isomorphic graphs.

Proof. We prove this theorem in two directions. Firstly (=⇒),
following [43], we prove that the designed CAGC here can distin-
guish any two graphs that are distinguishable by 1-WL by contra-
diction. Assume that there exist two graphs G1 and G2 which can
be distinguished by 1-WL but cannot be distinguished by CAGC.
Further, suppose that 1-WL cannot distinguish these two graphs in
the iterations from 0 to � − 1, but can distinguish them in the �th

iteration. Then, there must exist two neighborhood subgraphs S�
and S� whose neighboring nodes correspond to two diferent sets

� �
of node labels at the �th

iteration, i.e., {e� |� ∈ N�
1} ≠ {e

� | � ∈ N�
1}.

Since � is injective by Lemma 1, for S� and S� , � would yield two
diferent feature vectors at the �th

iteration. This means that CAGC
can also distinguish G1 and G2, which contradicts the assumption.

Secondly (⇐=), we prove that there exist at least two graphs
that can be distinguished by CAGC but cannot be distinguished by
1-WL. Figure 11 in Supplementary B.4. presents two of such graphs
S� , S�

′
, which are subgraph isomorphic but non-bipartite-subgraph-

isomorphic. Assuming� and� ′ have exactly the same neighborhood
feature vectors e, then directly propagating according to 1-WL or
even considering node degree as the edge weight as GCN [13] can
still end up with the same propagated feature for � and � ′ . However,
if we leverage JC to calculate CIR as introduced in Appendix A.1,
then we end up with {(��� �1)−0.5e, (��� �2)−0.5e, (��� �3)−0.5e} ≠

{(�−0.5�−′ 0.5 +�e� ′ � ′)e, (�−0.5�−′ 0.5 +�e� ′ � ′)e, (�−0.5�−′ 0.5 +�e� ′ � ′)e}.� ′ � 1 � ′ � 2 � ′ � 3
1 2 3

Since � is injective by Lemma 1, CAGC would yield two diferent
embeddings for � and � ′ . □

Theorem 2 indicates that GNNs whose aggregation scheme is
CAGC can distinguish non-bipartite-subgraph-isomorphic graphs
that are indistinguishable by 1-WL.

3.2 Model Architecture and Complexity
Following the principle of LightGCN that the designed graph con-
volution should be light and easy to train, except for the message-

passing component, all other components of our proposed CAGC-
based models is exactly the same as LightGCN including the average
pooling and the model training, which have already been covered in
Section 2. We provide the detailed time/space complexity compari-

son between our models and all other baselines in Appendix A.3.
We visualize the architecture of CAGC-based models in Figure 4.
Based on the choice of �, we have two specifc model variants. For
the frst variant CAGCN, we calculate the edge weight solely based
on CIR in message-passing by setting �(�, �) = � in Eq.(7) and set
�� =

Í
� ∈N1 ��

−0.5��
−0.5

to ensure that the total edge weights for
�

messages received by each node are the same as the one in Light-
GCN. For CAGCN*, we set � as the weighted summation and set
�� = � as a constant controlling the trade-of between contributions
from message-passing by LightGCN and by CAGC. We term the
model variant as CAGCN(*)-jc if we use Jaccard Similarity (JC) [17]
to compute �. The same rule applies to other topological metrics
listed in Appendix A.1. Concrete equations of CAGCN and CAGCN*
are provided in Appendix A.4.2.

Figure 4: The architecture of the proposed CAGCN(*).

4 EXPERIMENTS
In this section, we conduct experiments to evaluate CAGCN(*).

4.1 Experimental Settings
4.1.1 Datasets. Following [9, 37], we validate the proposed ap-
proach on Gowalla, Yelp, Amazon, and Ml-1M, the details of
which are provided in [9, 37]. Moreover, we collect two extra
datasets to further demonstrate the superiority of our proposed
model in even broader user-item interaction domains: (1) Loseit:
This dataset is collected from subreddit loseit - Lose the Fat3

from
March 2020 to March 2022 where users discuss healthy and sus-
tainable methods of losing weight via posts. To ensure the quality
of this dataset, we use the 10-core setting [8], i.e., retaining users
and posts with at least ten interactions. (2) News: This dataset
includes the interactions from subreddit World News4

where users
share major news around the world via posts. Similarly, we use the
10-core setting to ensure the quality of this dataset. We summarize
the statistics of all six datasets in Table 2.
3
https://www.reddit.com/r/loseit/

4
https://www.reddit.com/r/worldnews/

95

https://github.com/YuWVandy/CAGCN/blob/main/supplementary.pdf
https://4https://www.reddit.com/r/worldnews
https://3https://www.reddit.com/r/loseit

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Wang, et al.

Table 1: Performance comparison of CAGCN(*) with baselines. The best and runner-up results are in bold and underlined.

Model Metric MF NGCF LightGCN UltraGCN
-jc

CAGCN
-sc -cn -lhn -jc

CAGCN*
-sc -lhn

Gowalla
Recall@20
NDCG@20

0.1554
0.1301

0.1563
0.1300

0.1817
0.1570

0.1867
0.1580

0.1825
0.1575

0.1826 0.1632
0.1577 0.1381

0.1821
0.1577

0.1878
0.1591

0.1878
0.1588

0.1857
0.1563

Yelp2018
Recall@20
NDCG@20

0.0539
0.0460

0.0596
0.0489

0.0659
0.0554

0.0675
0.0553

0.0674
0.0564

0.0671 0.0661
0.0560 0.0546

0.0661
0.0555

0.0708
0.0586

0.0711
0.0590

0.0676
0.0554

Amazon
Recall@20
NDCG@20

0.0337
0.0265

0.0336
0.0262

0.0420
0.0331

0.0682
0.0553

0.0435
0.0343

0.0435 0.0403
0.0342 0.0321

0.0422
0.0333

0.0510
0.0403

0.0506
0.0400

0.0457
0.0361

Ml-1M
Recall@20
NDCG@20

0.2604
0.2697

0.2619
0.2729

0.2752
0.2820

0.2783
0.2638

0.2780
0.2871

0.2786 0.2730
0.2881 0.2818

0.2760
0.2871

0.2822
0.2775

0.2827
0.2776

0.2799
0.2745

Loseit
Recall@20
NDCG@20

0.0539
0.0420

0.0574
0.0442

0.0588
0.0465

0.0621
0.0446

0.0622
0.0474

0.0625 0.0502
0.0470 0.0379

0.0592
0.0461

0.0654
0.0486

0.0658
0.0484

0.0658
0.0489

News
Recall@20
NDCG@20

0.1942
0.1235

0.1994
0.1291

0.2035
0.1311

0.2034
0.1301

0.2135
0.1385

0.2132 0.1726
0.1384 0.1064

0.2084
0.1327

0.2182
0.1405

0.2172
0.1414

0.2053
0.1311

Avg. Rank
Recall@20
NDCG@20

9.83
9.50

9.17
9.17

7.33
5.83

4.17
6.00

4.67
3.67

4.33 8.83
4.00 8.33

6.17
5.00

1.67
2.50

1.50
2.50

3.33
5.17

jc-Jacard Similarity, sc-Salton Cosine Similarity, cn-Common Neighbors, lhn-Leicht-Holme-Nerman

Table 2: Basic dataset statistics.

Dataset # Users # Items # Interactions Density
Gowalla 29, 858 40, 981 1, 027, 370 0.084%
Yelp 31, 668 38, 048 1, 561, 406 0.130%
Amazon 52, 643 91, 599 2, 984, 108 0.062%
Ml-1M 6, 022 3, 043 895, 699 4.888%
Loseit 5, 334 54, 595 230, 866 0.08%
News 29, 785 21, 549 766, 874 0.119%

*Yelp: Yelp2018; *Amazon: Amazon-Books;*Ml-1M: Movielens-1M.

4.1.2 Baseline methods. We compare our model with MF, NGCF,
LightGCN, UltraGCN, GTN [4, 9, 19, 27, 37]. Details of them are
clarifed in Appendix A.4.1. Since here the purpose is to evaluate the
efectiveness of CAGC-based message-passing, we only compare
with baselines that focus on graph convolution (besides the classic
MF) including the state-of-the-art GNN-based recommendation
models (i.e., UltraGCN and GTN). Note that our work could be fur-
ther enhanced if incorporating other techniques such as contrastive
learning to derive self-supervision but stacking these would side-
track the main topic of this paper, graph convolution, so we leave
them as one future direction.
4.1.3 Evaluation Metrics. Two popular metrics: Recall and Nor-
malized Discounted Cumulative Gain(NDCG) [37] are adopted for
evaluation. We set the default value of K as 20 and report the average
of Recall@20 and NDCG@20 over all users in the test set. During
inference, we treat items that the user has never interacted with in
the training set as candidate items. All models predict users’ prefer-
ence scores over these candidate items and rank them based on the
computed scores to further calculate Recall@20 and NDCG@20.

4.2 Performance Comparison
We frst compare our proposed CAGCN-variants with LightGCN.
In Table 1, CAGCN-jc/sc/lhn achieves higher performance than
LightGCN because we aggregate more information from nodes with
higher CIR(jc, sc, lhn) that bring more benefcial collaborations as
justifed in Section 2.2. CAGCN-cn generally performs worse than
LightGCN because nodes having more common neighbors with
other nodes tend to have higher degrees and blindly aggregating
information more from these nodes would cause false-positive link

Table 3: Performance comparison of CAGCN* with GTN.

Model Metric GTN
-jc

CAGCN*
-sc -lhn

Gowalla
Recall@20
NDCG@20

0.1870
0.1588

0.1901
0.1604

0.1899
0.1603

0.1885
0.1576

Yelp2018
Recall@20
NDCG@20

0.0679
0.0554

0.0731
0.0605

0.0729
0.0601

0.0689
0.0565

Amazon
Recall@20
NDCG@20

0.0450
0.0346

0.0573
0.0456

0.0575
0.0458

0.0520
0.0409

prediction. Since diferent datasets exhibit diferent patterns of 2nd-
order connectivity, there is no fxed topological metric that performs
the best among all datasets. For example, CAGCN-jc performs better
than CAGCN-sc on Yelp and News, while worse on Gowalla, Ml-1M.

Then, we compare CAGCN*-variants with other baselines. We
omit CAGCN*-cn here due to the worse performance of CAGCN-cn
than LightGCN. We can see that CAGCN*-jc/sc almost consistently
achieves higher performance than other baselines except for Ultra-
GCN on Amazon. This is because UltraGCN allows multiple nega-
tive samples for each positive interaction, e.g., 500 negative samples
here on Amazon

5
, which lowers the efciency as we need to spend

more time preparing a large number of negative samples per epoch.
Among the baselines, UltraGCN exhibits the strongest performance
because it approximates the infnite layers of message passing and
constructs the user-user graphs to capture 2nd-order connectivity.
LightGCN and NGCF perform better than MF since they inject the
collaborative efect directly through message-passing.

To align the setting with GTN, we increase the embedding size
�0

to 256 following [4]6
and observe the consistent superiority of

our model over GTN in Table 3. This is because in GTN [4], the
edge weights for message-passing are still computed based on node
embeddings that implicitly encode noisy collaborative signals from
unreliable interactions. Conversely, our CAGCN* directly alleviates
the propagation on unreliable interactions based on its CIR value,
which removes noisy interactions from the source.

5
UltraGCN negative samples: 1500/800/500/200 on Gowalla/Yelp2018/Amazon/Ml-1M.

6
As the user/item embedding is a signifcant hyperparameter, it is crucial to ensure the
same embedding size when comparing models; thus, we separately compare against
GTN using their larger embedding size.

96

https://github.com/xue-pai/UltraGCN
https://github.com/wenqifan03/GTN-SIGIR2022

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 4: Efciency comparison of CAGCN* with LightGCN.
For fair comparison, we track the frst time CAGCN* achieves
the best performance of LightGCN.
Model Stage Gowalla Yelp Amazon Ml-1M Loseit News
LightGCN Training 16432.0 28788.0 81976.5 18872.3 39031.0 13860.8

Preprocess 167.4 281.6 1035.8 33.8 31.4 169.0
CAGCN* Training 2963.2 1904.4 1983.9 11304.7 10417.7 1088.4

Total 3130.6 2186.0 3019.7 11338.5 10449.1 1157.4

Improve
Training
Total

82.0%
80.9%

93.4%
92.4%

97.6%
96.3%

40.1%
39.9%

73.3%
73.2%

92.1%
91.6%

Figure 5: Training time (s) of diferent models.

4.3 Efciency Comparison
As recommendation models will be eventually deployed in user-
item data of real-world scale, it is crucial to compare the efciency
of the proposed CAGCN(*) with other baselines. To guarantee a
fair comparison, we use a uniform code framework implemented
ourselves for all models and run them on the same machine with
Ubuntu 20.04 system, AMD Ryzen 9 5900 12-Core Processor (3.0
GHz), 128 GB RAM and GPU NVIDIA GeForce RTX 3090. We report
the Recall@20 on Yelp and NDCG@20 on Loseit achieved by the
best CAGCN(*) variant based on Table 1. We track the performance
and the training time per 5 epochs. Complete results are included
in Supplementary B.3. In Figure 5(a)-(b), CAGCN achieves higher
performance than LightGCN in less time. We hypothesize that for
each user, its neighbors with higher interactions with its whole
neighborhood would also have higher interactions with its inter-
acted but unobserved neighbors. Then as CAGCN aggregate more
information from these observed neighbors that have higher inter-
actions with the whole neighborhood, it indirectly enables the user
to aggregate more information from its to-be-predicted neighbors.

To verify the above hypothesis, we defne the to-be-predicted
neighborhood set of user � in the testing set as Nb�

1
and for each b

neighbor � ∈ N�
1
, calculate its CIR �b

�
� (�) with nodes in Nb�

1
. Then

we compare the ranking consistency among CIRs calculated from
training neighborhoods (i.e., �� (�)), from testing neighborhoods
(i.e., �b� (�)) and from full neighborhoods (we replace b� with N�

1∪N1

Nb�
1
in Eq. (5)). Here we respectively use four topological metrics

(JC, SC, LHN, and CN) to defne � and rank the obtained three lists.
Then, we measure the similarity of the ranked lists between Train-
Test and between Train-Full by Rank-Biased Overlap (RBO) [42].
The averaged RBO values over all nodes � ∈ V on three datasets
are shown in Table 5. It is clear that the RBO values on all these
datasets are beyond 0.5, which verifes our hypothesis. The RBO
value between Train-Full is always higher than the one between
Train-Test because most interactions are in the training set.

Table 5: Average Rank-Biased Overlap (RBO) of the ranked
neighbor lists between training (i.e., N�

1) and testing/full (i.e.,
Nb�

1 and N�
1∪ Nb�

1, respectively) dataset over all nodes � ∈ U.
Metric

Gowalla
Train-Test Train-Full

Yelp
Train-Test Train-Full

Ml-1M
Train-Test Train-Full

JC 0.604±0.129 0.902±0.084 0.636±0.124 0.897±0.081 0.848±0.092 0.978±0.019
SC 0.611±0.127 0.896±0.084 0.657±0.124 0.900±0.077 0.876±0.077 0.983±0.015
LHN 0.598±0.121 0.974±0.036 0.578±0.100 0.976±0.029 0.845±0.082 0.987±0.009
CN 0.784±0.120 0.979±0.029 0.836±0.100 0.983±0.023 0.957±0.039 0.995±0.006

Moreover, by combining two views of propagations, one from
CAGC and one from LightGCN, CAGCN* achieves even higher
performance with even less time. This is because keeping aggregat-
ing more information from neighbors with higher CIR (as CAGCN
does) would prevent each user from aggregating information from
his/her other neighbors. In addition, we report the frst time that
our best CAGCN* variant achieves the best performance of Light-
GCN on each dataset in Table 4. We also report the preprocessing
time for pre-calculating the CIR matrix � for our model to avoid
any bias. We could see that even considering the preprocessing
time, it still takes signifcantly less time for CAGCN* to achieve the
same best performance as LightGCN, which highlights the broad
prospects to deploy CAGCN* in real-world recommendations.

4.4 Further Probe
4.4.1 Performance grouped by node degrees. Here we group nodes
by degree and visualize the average performance of each group.
Comparing non-graph-based models (e.g., MF), graph-based mod-

els (e.g., LightGCN, CAGCN(*)) achieve higher performance for
lower degree nodes [0, 300) while lower performance for higher
degree nodes [300, Inf). Since node degree follows the power-law
distribution [32], the average performance of graph-based models
is still higher than MF. On one hand, graph-based models leverage
neighborhood to augment the weak supervision for low-degree
nodes. On the other hand, they introduce noisy interactions for
higher-degree nodes. It is also interesting to see the opposite per-
formance trends under diferent evaluation metrics: NDCG prefers
high-degree nodes while recall prefers low-degree nodes. This indi-
cates that diferent evaluation metrics have diferent sensitivity to
node degrees and an unbiased node-centric evaluator is desired.

0.0

0.2

0.4

0.6

N
D

C
G

@
20 MF

NGCF
LightGCN CAGCN-jc CAGCN*-jc

0.00

0.05

0.10

0.15

R
ec

al
l@

20

[0, 100)
[100, 200)

[200, 300)
[300, 400)

[400, 500)
[500, 600)

[600, Inf)

Degree Group

0.00

0.05

0.10

0.15

C
IR

-s
c

0

5

10 C
ou

nt
 (L

og
)

Figure 6: Performance w.r.t. node degree on Gowalla. A simi-
lar trend is seen on Yelp in Supplementary B.2.

97

https://github.com/YuWVandy/CAGCN/blob/main/supplementary.pdf
https://github.com/YuWVandy/CAGCN/blob/main/supplementary.pdf

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Wang, et al.

Figure 7: In (a)-(b), the performance frst increases since we capture higher-layer neighborhood information and higher-hop
topological interaction in calculating CIR as �, b� increase from 1 to 3. However, the performance decreases in (a) as � increases
due to over-smoothing. In (c)-(d), we add the global top edges directly (rather than cycle each node) according to their CIR.
More details are provided in Appendix A.5.2.
4.4.2 Impacts of propagation layers � and neighborhood hops b�.
Figure 7(a)-(b) visualize the performance of CAGCN* and Light-
GCN when the propagation layer � in Eq. (2) and the neighborhood
hop b� in Eq. (5) increase. In (a), the performance frst increases as �
increases from 1 to 3 due to the incorporation of high-layer neigh-
borhood information and then decreases due to over-smoothing.
More importantly, our CAGCN* is always better than LightGCN
at all propagation layers. In (b), the performance consistently in-
creases as the number of neighborhood hops increases because we
are allowed to consider even more higher topological interactions
among each node’s neighborhood in computing CIR.

4.4.3 Adding edges globally according to CIR.. Figure 7(c)-(d) visu-
alize the performance change when we add edges randomly and
according to CIR. Unlike Figure 2-3 where we add edges by cycling
each node, here we directly select the global top edges regardless
of each center node according to their CIR and then evaluate the
LightGCN with the pre-trained user-item embeddings. In the frst
stage, we observe a similar trend that adding edges according to JC,
SC, and LHN leads to faster performance gain. However, since we
don’t cycle over each node, we would keep adding so many edges
with larger CIR to the same node, which fails to bring performance
gain anymore and hence cannot maximize our performance beneft
under the node-centric evaluation metric.

5 RELATED WORK
Collaborative Filtering & Recommendation. Collaborative fl-
tering (CF) predicts users’ interests by utilizing the preferences of
other users with similar interests [5]. Early CF methods used Matrix
Factorization techniques [14, 26, 27, 33] to capture CF efect via
optimizing users/items’ embeddings over historical interactions.
Stepping further, Graph-based methods either leverage topological
constraints or message-passing to inject the CF efect into user/item
embeddings [9, 37]. ItemRank and BiRank [6, 10] perform label prop-
agation and compute users’ ranking based on structural proximity
between the observed and the target items. To make user prefer-
ences learnable, HOP-Rec [46] combines the graph-based method
and the embedding-based method. Yet, interactions captured by
random walks there do not fully explore the high-layer neighbors
and multi-hop dependencies [39]. By contrast, GNN-based meth-

ods are superior at encoding higher-order structural proximity in
user/item embeddings [9, 37]. Recent work [1, 4, 34] has demon-

strated that not all captured collaborations improve users’ ranking.
[1] proposes to learn binary mask and impose low-rank regular-
ization while ours propose novel topological metric CIR to weigh

neighbors’ importance. [4] smooths nodes’ embeddings based on
degree-normalized embedding similarity, while ours adaptively
smooth based on topological proximity(CIR). [34] denoises interac-
tions/preserve diversity based on 1-layer propagated embeddings
and hence cannot go beyond 1-WL test, while ours keep neighbors
and does not focus on diversity issues.
Link Prediction. As a generalized version of recommendation,
link prediction fnds applications in predicting drug interactions
and completing knowledge graphs [22, 29]. Early studies adopt
topological heuristics to score node pairs [15, 21, 52]. Furthermore,
latent-based/deep-learning methods [25, 48] are proposed to char-
acterize underline topological patterns in node embeddings via ran-
dom walks [7] or regularizing [25]. To fully leverage node features,
GNN-based methods are proposed and achieve unprecedented suc-
cess owing to the use of the neural network to extract task-related
information and the message-passing capture the topological pat-
tern [23, 49, 51]. Recently, eforts have been invested in developing
expressive GNNs that can go beyond the 1-WL test [18, 43, 50]
for node/graph classifcation. Following this line, our work devel-
ops a recommendation-tailored graph convolution with provably
expressive power in predicting links between users and items.

6 CONCLUSION
In this paper, we fnd that the message-passing captures collabora-
tive efect by leveraging interactions between neighborhoods. The
strength of the captured collaborative efect depends the embedding
similarity, the weight of paths and the contribution of each propaga-
tion layer. To determine whether the captured collaborative efect
would beneft the prediction of user preferences, we propose the
Common Interacted Ratio (CIR) and empirically verify that leverag-
ing collaborations from neighbors with higher CIR contributes more
to users’ ranking. Furthermore, we propose CAGCN(*) to selectively
aggregate neighboring nodes’ information based on their CIRs.
We further defne a new type of isomorphism, bipartite-subgraph-
isomorphism, and prove that our CAGCN* can be more expres-
sive than 1-WL in distinguishing subtree(subgraph)-isomorphic yet
non-bipartite-subgraph-isomorphic graphs. Experimental results
demonstrate the advantages of the proposed CAGCN(*) over other
baselines. Specifcally, CAGCN* outperforms the most representa-
tive graph-based recommendation model, LightGCN [9], by around
10% in Recall@20 but also achieves roughly more than 80% speedup.
In the future, we will explore the imbalanced performance improve-

ment among nodes in diferent degree groups as seen in Figure 6,
especially from the perspective of GNN fairness [38, 41].

98

Collaboration-Aware Graph Convolutional Network for Recommender Systems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Huiyuan Chen, Lan Wang, Yusan Lin, Chin-Chia Michael Yeh, Fei Wang, and

Hao Yang. 2021. Structured graph convolutional networks with stochastic masks
for recommender systems. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 614–623.

[2] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[3] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for
recommendation systems. In The 41st international ACM SIGIR conference on
research & development in information retrieval. 515–524.

[4] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.
Graph Trend Filtering Networks for Recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 112–121.

[5] David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. 1992. Using
collaborative fltering to weave an information tapestry. Commun. ACM 35, 12
(1992), 61–70.

[6] Marco Gori, Augusto Pucci, V Roma, and I Siena. 2007. Itemrank: A random-walk
based scoring algorithm for recommender engines.. In IJCAI, Vol. 7. 2766–2771.

[7] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[8] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized
ranking from implicit feedback. In Proceedings of the AAAI Conference on Artifcial
Intelligence, Vol. 30.

[9] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[10] Xiangnan He, Ming Gao, Min-Yen Kan, and Dingxian Wang. 2016. Birank: To-
wards ranking on bipartite graphs. IEEE Transactions on Knowledge and Data
Engineering 29, 1 (2016), 57–71.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative fltering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[12] Yue Hu, Ao Qu, and Dan Work. 2022. Detecting extreme trafc events via a
context augmented graph autoencoder. ACM Transactions on Intelligent Systems
and Technology (TIST) 13, 6 (2022), 1–23.

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with
Graph Convolutional Networks. In ICLR.

[14] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[15] Elizabeth A Leicht, Petter Holme, and Mark EJ Newman. 2006. Vertex similarity
in networks. Physical Review E 73, 2 (2006), 026120.

[16] Xin Li and Hsinchun Chen. 2013. Recommendation as link prediction in bipartite
graphs: A graph kernel-based machine learning approach. Decision Support
Systems 54, 2 (2013), 880–890.

[17] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. Journal of the American society for information science and
technology 58, 7 (2007), 1019–1031.

[18] Meng Liu, Haiyang Yu, and Shuiwang Ji. 2022. Your Neighbors Are Communi-

cating: Towards Powerful and Scalable Graph Neural Networks. arXiv preprint
arXiv:2206.02059 (2022).

[19] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
2021. UltraGCN: Ultra Simplifcation of Graph Convolutional Networks for
Recommendation. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 1253–1262.

[20] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel.
2020. Social-stgcnn: A social spatio-temporal graph convolutional neural network
for human trajectory prediction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 14424–14432.

[21] Mark EJ Newman. 2001. Clustering and preferential attachment in growing
networks. Physical review E 64, 2 (2001), 025102.

[22] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015.
A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1
(2015), 11–33.

[23] Liming Pan, Cheng Shi, and Ivan Dokmanić. 2021. Neural Link Prediction with
Walk Pooling. arXiv preprint arXiv:2110.04375 (2021).

[24] Dongmin Park, Hwanjun Song, Minseok Kim, and Jae-Gil Lee. 2020. TRAP:
Two-level regularized autoencoder-based embedding for power-law distributed
data. In Proceedings of The Web Conference 2020. 1615–1624.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[26] Stefen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings

of the Twenty-Fifth Conference on Uncertainty in Artifcial Intelligence. 452–461.
[27] Stefen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[28] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recom-

mender systems handbook. In Recommender systems handbook. Springer.
[29] Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski,

Klas Karis, Andrej Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto,
Yu Wang, et al. 2022. ChemicalX: A Deep Learning Library for Drug Pair Scoring.
arXiv preprint arXiv:2202.05240 (2022).

[30] Gerard Salton. 1989. Automatic text processing: The transformation, analysis,
and retrieval of. Reading: Addison-Wesley 169 (1989).

[31] Walid Shalaby, Sejoon Oh, Amir Afsharinejad, Srijan Kumar, and Xiquan Cui.
2022. M2TRec: Metadata-aware Multi-task Transformer for Large-scale and
Cold-start free Session-based Recommendations. In Proceedings of the 16th ACM
Conference on Recommender Systems. 573–578.

[32] Andrew T Stephen and Olivier Toubia. 2009. Explaining the power-law degree
distribution in a social commerce network. Social Networks 31, 4 (2009), 262–270.

[33] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric learning
via memory-based attention for collaborative ranking. In WWW. 729–739.

[34] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022.
Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering.
In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 122–132.

[35] Chen Wang, Yuheng Qiu, Dasong Gao, and Sebastian Scherer. 2022. Lifelong
graph learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 13719–13728.

[36] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-
ral networks via continual learning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1515–1524.

[37] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative fltering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[38] Yu Wang. 2022. Fair Graph Representation Learning with Imbalanced and Biased
Data. In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining.

[39] Yu Wang and Tyler Derr. 2021. Tree Decomposed Graph Neural Network. In
Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2040–2049.

[40] Yu Wang, Wei Jin, and Tyler Derr. 2022. Graph neural networks: Self-supervised
learning. Graph Neural Networks: Foundations, Frontiers, and Applications (2022).

[41] Yu Wang, Yuying Zhao, Yushun Dong, Huiyuan Chen, Jundong Li, and Tyler
Derr. 2022. Improving fairness in graph neural networks via mitigating sensi-
tive attribute leakage. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1938–1948.

[42] William Webber, Alistair Mofat, and Justin Zobel. 2010. A similarity measure
for indefnite rankings. ACM TOIS 28, 4 (2010), 1–38.

[43] Asiri Wijesinghe and Qing Wang. 2021. A New Perspective on" How Graph
Neural Networks Go Beyond Weisfeiler-Lehman?". In ICLR.

[44] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. 2021. Self-supervised graph learning for recommendation. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 726–735.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[46] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.
HOP-rec: high-order proximity for implicit recommendation. In Proceedings of
the 12th ACM Conference on Recommender Systems. 140–144.

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD. 974–983.

[48] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-lehman neural machine for link
prediction. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining. 575–583.

[49] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in neural information processing systems 31 (2018).

[50] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. 2021. From Stars to
Subgraphs: Uplifting Any GNN with Local Structure Awareness. In International
Conference on Learning Representations.

[51] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. 2022. Learning
from counterfactual links for link prediction. In International Conference on
Machine Learning. PMLR, 26911–26926.

[52] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. 2009. Predicting missing links via
local information. The European Physical Journal B 71, 4 (2009), 623–630.

[53] Zixu Zhuang, Sheng Wang, Liping Si, Kai Xuan, Zhong Xue, Dinggang Shen, Lichi
Zhang, Weiwu Yao, and Qian Wang. 2022. Local Graph Fusion of Multi-view MR
Images for Knee Osteoarthritis Diagnosis. In International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 554–563.

99

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

A APPENDIX

A.1 Graph Topological Metrics for CIR b�
Here we demonstrate that by confguring diferent � and b�, �� (�)
can express many existing graph similarity metrics. ∑ ∑� ∑

�b 1
b

1
�� (�) = �2� (8)

|N�
1 | � ({N1 |� ∈ �2� })
� ∈N1 �=1 � 2� ∈�2� � ��

� �� ��

• Jaccard Similarity (JC) [17]: The JC score measures the simi-

larity between neighborhood sets as the ratio of the intersection
of two neighborhood sets to the union of these two sets:

|N1 ∩ N1 |
� �

JC(�, �) = (9)

|N1 ∪ N1 |
� �

Let b� = 1 and set � ({N1 |� ∈ �2 }) = |N1 ∪ N1 |, then we have:
� �� � �

1
1 ∑

2
∑

1 � 2 ∑ |N
�
1 ∩ N

�
1 |

� 2 ∑
�� (�) = � = = JC(�, �) (10)

|N�
1 |

2 |N
�
1 ∪ N

�
1 | |N�

1 | |N
�
1 ∪ N

�
1 | |N�

1 |
� � � � ∈N1 � 2 ∈� � ∈N1 � ∈N1

�� ��

• Salton Cosine Similarity (SC) [30]: The SC score measures the
cosine similarity between the neighborhood sets of two nodes:

|N1 ∩ N1 |
� �

SC(�, �) = √ (11)
|N1 ∪ N1 |

� � √
let b� = 1 and set � ({N1 |� ∈ �2 }) = |N1 ∪ N1 |, then we have:

� �� � �

1 ∑ ∑
1 � 2 ∑ |N

�
1 ∩ N

�
1 |

� 2 ∑
1�� (�) = �2 √ = √ = SC(�, �)

|N�
1 |

� ∈N1 � 2 ∈�2 |N
�
1 ∪ N

�
1 | |N�

1 |
� ∈N1 |N

�
1 ∪ N

�
1 | |N�

1 |
� ∈N1

� � � �� ��
(12)

• Common Neighbors (CN) [21]: The CN score measures the
number of common neighbors of two nodes and is frequently
used for measuring the proximity between two nodes:

CN(�, �) = |N�
1 ∩ N�

1 | (13)

Let b� = 1 and set � ({N1 |� ∈ �2 }) = 1, then we have:
� ��

1 ∑ ∑ � 2 ∑ �2 ∑
1 2�� (�) = � 1 = |N1 ∩ N1 = CN(�, �) (14)

|N�
1 | |N�

1 | � � | |N�
1 |

� � �
2� ∈N1 � 2 ∈� � ∈N1 � ∈N1

�� ��

Since CN does not contain any normalization to remove the bias
of degree in quantifying proximity and hence performs worse
than other metrics as demonstrated by our recommendation
experiments in Table 1.

• Leicht-Holme-Nerman (LHN) [15]: LHN is very similar to SC.
However, it removes the square root in the denominator and is
more sensitive to the degree of node:

|N1 ∩ N1 |
� �

LHN(�, �) = (15)

|N1 | · |N1 |
� �

Let b� = 1 and set � ({N1 |� ∈ �2 }) = |N1 | · |N1 |, then we have:
� �� � �

1
1 ∑

2
∑

1 �2 ∑ |N
�
1 ∩ N

�
1 |

� 2 ∑
�� (�) = � = = LHN(�, �)

|N�
1 |

2 |N
�
1 | · |N1

� | |N�
1 | |N

�
1 | · |N

�
1 | |N�

1 |
� � � � ∈N1 � 2 ∈� � ∈N1 � ∈N1

�� ��
(16)

We further emphasize that our proposed CIR is a generalized ver-
sion of these four existing metrics and can be delicately designed
toward satisfying downstream tasks and datasets. We leave such
exploration on the choice of � as one potential future work.

Wang, et al.

A.2 Derivation of Eq. (4)
The matrix form of computing the ranking of user � over item �
after �-layer LightGCN-based message-passing:

� � � � ∑ ∑ ∑ ∑
�� = (��1 E�

�1)⊤(��1 E
�1) = (��1 A

�1 E0)�
⊤(��1 A

�1 E0)� .�� �
�1=0 �1=0 �1=0 �1=0

(17)
where ��1 is the layer contribution and LightGCN uses mean-pooling,
i.e., 1

in Eq. (2). For the propagated embedding at a specifc layer
�

�1, we have: ∑
E�1 = (A�1 E0)� = �

�1 e0
(18)� �� � ,

�
1� ∈V Í Î

�

�1
where ��1 = �

1 �
1 �

1 � −0.5� −0.5(��1 = 0 if � = ∅).
�� � ∈� ��� ∈� � � �� ��

�� �� ��

V�1
is the set of all nodes having paths of length �1 to � and can be

expressed as:
�

�1Ø
V�1 N�2= · 1[(�1 − �2)%2 = 0], (19)

�2 =0
� �

where

N�2

(
� , (�1 − �2)%2 = 0

� · 1[(�1 − �2)%2 = 0] =
N�2

(20)

∅, (�1 − �2)%2 ≠ 0
.

Substituting Eq. (19) into Eq. (18), we have:
�
1∑ ∑ ∑ ∑ �

1 �
1 0 �

1 0 �
1 0E = (A�1 E0)� = � = � = � � �� e� �� e� �� e� .

�
1 Ð�

1 �
2 �

2 =0 �
2� ∈V� � ∈

�
2
=0 N� ·1[(�1 −�2) %2=0] � ∈N� ·1[(�1 −�2) %2=0]

(21)

Then the aggregation of all � layers’ embeddings of user � is ex-
pressed as:

� � �1∑ ∑ ∑ ∑
�
�1 0��1 E�

�1 = ��1 � . (22)
�� e

�1=0 �1=0 �2=0 � ∈N�
2 ·1[(�1 −�2)%2]�

Eq. (22) means that for each length �1 ∈ {0, 1, ..., �}, for each node

� ∈ V�1
that has path of length �1 to �, we propagate its embed-�

ding over each path ��1 ∈ ��1
with the corresponding weight

�� �� Î
coefcient �

1 �
−0.5�−0.5.� � ��� ∈�

��

Since nodes that are �1-hops away from � cannot have paths of
length less than �1, we reorganize Eq. (22) by frst considering the
hop of each node and then considering the length of each path,
which leads to:

� � �
1 � �

�
2 0 �

2 0

∑ ∑ ∑ ∑ ∑ ∑ ∑
��

1 E�
�
1 = ��

1 �
�� e� = ��

2 �
�� e� ,

�
1
=0 �

1
=0 �

2
=0 �

2 �
1
=0 �

1 �2=�1� ∈N ·1[(�
1 −�2) %2] � ∈N � �

(23)Í Î �2
where ��2 = �

2 �
2 �

2 � −0.5� −0.5(��2 = 0 if � = ∅).
�� � � �� �� � ∈�

�� �� ��� ∈� ��

Then by substituting Eq. (23) into Eq. (17), we end up with:

� � � � ∑ ∑ ∑ ∑ ∑ ∑
0 0���

� = (��2 �
�
��
2 e�)

⊤(��2 ���
�2 e�), (24)

�1 =0 �
1 �2=�1 �1=0 �

1 �2=�1� ∈N � ∈N � �

where N0 = {�} and specifcally, �0
is the weight mea-� �� = 1. ��2

suring contributions of propagated embeddings at layer �2.

100

Collaboration-Aware Graph Convolutional Network for Recommender Systems

A.3 Complexity Comparison and Analysis
Let |V|, |E |, |F | be the total number of nodes, edges, and feature
dimensions (assuming feature dimensions stay the same across all
feature transformation layers). Let � be the propagation layer for
all graph-based models using message-passing. Let � be the total
number of negative samples per epoch per positive pair and �
be the number of 2nd-order neighbors. For � , all baselines use 1
per epoch per positive pair and hence can be omitted (aside from
UltraGCN using a larger number). Then the complexity of each
model is summarized in Table 6. For CAGCN, since we only con-
sider 2-hops away connections to compute CIR in Eq. (5), the main
computational load would be computing the power of adjacency
matrix, which takes O(|V|3). Note that for both of our CAGCN
and UltraGCN, we can apply Strassens’s Algorithm to further re-
duce the O(|V|3) to O(|V|2.8). In Table 4 in Section 4.3, we report
the preprocessing time for each dataset. Clearly, compared with
the time used for training, the time for preprocessing is minor,
which even demonstrates the superior efciency of CAGCN since
it signifcantly speeds up the training as justifed in Section 4.3.

Table 6: Complexity of the pre-procession and the forward
pass of CAGCN and diferent baselines.

Model MF NGCF LightGCN
Extra Hyper-parameters / / 1

/ O(| E | + |V |) O(| E | + |V |)
Preprocess

Space
Time / O(| E | + |V |) O(| E | + |V |)
Space O(|V |�) O(� |V |� + | E | + �� 2) O(� |V |� + | E |)

Training
Time O(| E |�) O(� (| E |� + |V |� 2)) O(� | E |� + � |V |�)

Model GTN UltraGCN CAGCN
Extra Hyper-parameters 1 7 2

O(| E | + |V |) O(| E | + |V |) O(| E | + |V |)
Preprocess

Space
Time O(| E | + |V |) O(|V |3) O(|V |3)
Space O(� |V |� + | E |) O(|V |� + |V |�) O(� |V |� + | E |)

Training
Time O(� | E |� + � |V |�) O(� (| E | + |� |�)�) O(� | E |� + � |V |�)

A.4 Experimental Setting
A.4.1 Baselines. We compare our proposed CAGCN(*) with the
following baselines: MF [27]: Most classic collaborative fltering
method equipped with the BPR loss; NGCF [37]: The frst GNN-
based collaborative fltering model; LightGCN [9]: The most popu-
lar GNN-based collaborative fltering model, which removes feature
transformation and nonlinear activation; UltraGCN [19]: The frst
model approximating regularization weights by infnite layers of
message passing, and leveraging higher-order user-user relation-
ships; GTN [4]: This model leverages a robust and adaptive prop-
agation based on the trend of the aggregated messages to avoid
unreliable user-item interactions.

A.4.2 CAGCN(*)-variants. For CAGCN, �� =
Í
� ∈N1 ��

−0.5��
−0.5

to
�

ensure that the total edge weights for messages received by each
node are the same as LightGCN. Therefore, Eq. (7) becomes:∑ ∑

�� � � +1 � e = ((� −0.5� −0.5) Í)e� , ∀� ∈ V . (25)� � �
� ∈N1 ���

� ∈N1 � ∈N1 �
� �

For CAGCN*, �� = � as a constant controlling the trade-of between
contributions from message-passing according to LightGCN and
according to CAGC. Eq. (7) becomes:∑

�� � � +1 � e = (� Í + � −0.5� −0.5)e� , ∀� ∈ V, (26)� � �
� ∈N1 ���

� ∈N1 �
�

where we search � in {1, 1.2, 1.5, 1.7, 2.0}.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

A.5 Additional Experiments
A.5.1 Adding edges according to local CIRs. Given the user-item
bipartite graph for training, we calculate the CIR-variants and use
them to rank the neighborhood for each center node. During con-
struction, we frst remove all edges and then iteratively cycle over
each node and add its corresponding neighbor based on the ranking
until hitting the budget. Figure 8(a) contains an example with users
�1, �2 and a budget of three edges, where �1 and �2 both frst get
an edge, but then only �1 gets a second edge.

Figure 8: (a) The procedure of adding edges according to
CIR of neighbors around each node. (b)-(c) The performance
change of adding edges on Gowalla and Yelp.

Similar to what we observed in Figure 3, the performance in-
creases as we add more edges on Gowalla and Yelp (Figure 8(b) and
(c), respectively). Furthermore, except for cn, adding edges accord-
ing to CIR-variants is more efective in increasing the performance,
which demonstrates the efectiveness of CIR in measuring the edge
importance.

A.5.2 Adding edges according to global CIRs. Here we introduce
how we add edges globally according to CIRs. Given the user-item
interactions for training, we frst construct the user-item bipartite
graph and calculate the diferent variants of CIR including jc, sc,
cn, lhn as stated in Appendix A.1. Then, we directly rank all edges
according to the computed CIR. In the construction stage, we frst
remove all edges in the bipartite graph. Then we select the top
edges according to the ranking based on our budget. Figure 9(a)
contains an example with users �1, �2 and a budget of three edges,
where we directly select the top-3 edges from all users’ neighbors.

Figure 9: (a) The procedure of adding edges according to CIR
globally. (b)-(c) The performance change of adding edges on
Amazon and Yelp.

In the frst stage, we observe a similar trend that adding edges ac-
cording to CIRs lead to faster performance gain as Figure 8, which
demonstrate the efectiveness of CIR in measuring the edge im-

portance globally. However, since we don’t cycle over each node
and add its corresponding edge as we do in Appendix A.5.1, we
would keep adding so many edges with larger CIR to the same node,
which may not maximize our performance beneft when the metric
is calculated by averaging over all nodes.

101

	Abstract
	1 Introduction
	2 Analysis on Collaborative Effect
	2.1 How does message-passing capture collaborative effect?
	2.2 When is the captured collaborative effect beneficial to users' ranking?

	3 Collaboration-Aware Graph Convolutional Networks
	3.1 Collaboration-Aware Graph Convolution
	3.2 Model Architecture and Complexity

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison
	4.3 Efficiency Comparison
	4.4 Further Probe

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Graph Topological Metrics for CIR
	A.2 Derivation of Eq. (4)
	A.3 Complexity Comparison and Analysis
	A.4 Experimental Setting
	A.5 Additional Experiments

