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ABSTRACT 
Graph Neural Networks (GNNs) have been successfully adopted 
in recommender systems by virtue of the message-passing that 
implicitly captures collaborative efect. Nevertheless, most of the 
existing message-passing mechanisms for recommendation are 
directly inherited from GNNs without scrutinizing whether the 
captured collaborative efect would beneft the prediction of user 
preferences. In this paper, we frst analyze how message-passing 
captures the collaborative efect and propose a recommendation-

oriented topological metric, Common Interacted Ratio (CIR), which 
measures the level of interaction between a specifc neighbor of 
a node with the rest of its neighbors. After demonstrating the 
benefts of leveraging collaborations from neighbors with higher 
CIR, we propose a recommendation-tailored GNN, Collaboration-
Aware Graph Convolutional Network (CAGCN), that goes beyond 
1-Weisfeiler-Lehman(1-WL) test in distinguishing non-bipartite-
subgraph-isomorphic graphs. Experiments on six benchmark datasets 
show that the best CAGCN variant outperforms the most represen-
tative GNN-based recommendation model, LightGCN, by nearly 
10% in Recall@20 and also achieves around 80% speedup. Our 
code/supplementary is at https://github.com/YuWVandy/CAGCN. 
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1 INTRODUCTION 
Recommender systems aim to alleviate information overload by 
helping users discover items of interest [2, 47] and have been widely 
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deployed in real-world applications [31]. Given historical user-item 
interactions (e.g., click, purchase, review, and rate), the key is to 
leverage the collaborative efect [3, 11, 37] to predict how likely 
users will interact with items. A common paradigm for modeling 
collaborative efect is to frst learn embeddings of users/items capa-
ble of recovering historical user-item interactions and then perform 
top-K recommendation based on the pairwise similarity between 
the learned user/item embeddings. 

Since historical user-item interactions can be naturally repre-
sented as a bipartite graph with users/items being nodes and inter-
actions being edges [9, 16, 37] and given the unprecedented success 
of GNNs in learning node representations [12, 13, 20, 53], recent re-
search has started to leverage GNNs to learn user/item embeddings 
for the recommendation. Two pioneering works NGCF [37] and 
LightGCN [9] leverage graph convolutions to aggregate messages 
from local neighborhoods, which directly injects the collaborative 
signal into user/item embeddings. More recently, [1, 44] explore the 
robustness and self-supervised learning [40] of graph convolution 
for recommendation. However, the message-passing mechanisms 
in all previous recommendation models are directly inherited from 
GNNs without carefully justifying how collaborative signals are cap-
tured and whether the captured collaborative signals would beneft 
the prediction of user preference. Such ambiguous understanding 
on how the message-passing captures collaborative signals would 
pose the risk of learning uninformative or even harmful user/item 
representations when adopting GNNs in recommendation. For ex-
ample, [4] shows that a large portion of user interactions cannot re-
fect their actual purchasing behaviors. In this case, blindly passing 
messages following existing styles of GNNs could capture harm-

ful collaborative signals from these unreliable interactions, which 
hinders the performance of GNN-based recommender systems. 

To avoid collecting noisy or even harmful collaborative signals 
in message-passing of traditional GNNs, existing work GTN [4] 
proposes to adaptively propagate user/item embeddings by adjust-
ing the weight of edges based on items’ similarity to users’ main 
preferences (i.e., the trend). However, such similarity is computed 
based on the learned embeddings that still implicitly encode noisy 
collaborative signals from unreliable user-item interactions. Worse 
still, calculating edge weights based on user/item embeddings along 
the training on the fy is computationally prohibitive and hence 
prevents the model from being deployed in industrial-level rec-
ommendations. SGCN [1] attaches the message-passing with a 
trainable stochastic binary mask to prune noisy edges. However, 
the unbiased gradient estimator increases the computational load. 
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Despite the fundamental importance of capturing benefcial col-
laborative signals, the related studies are still in their infancy. To 
fll this crucial gap, we aim to demystify the collaborative efect 
captured by message-passing and develop new insights towards 
customizing message-passing for recommendations. Furthermore, 
these insights motivate us to design a recommendation-tailored 
GNN, Collaboration-Aware Graph Convolutional Network(CAGCN), 
that passes neighborhood information based on their Common In-
teracted Ratio (CIR) via the Collaboration-Aware Graph Convolu-
tion (CAGC). Our major contributions are listed as follows: 

• Novel Perspective on Collaborative Efect: We demystify 
the collaborative efect by analyzing how message-passing helps 
capture collaborative signals and when the captured collaborative 
signals are benefcial in computing users’ ranking over items. 

• Novel Recommendation-tailored Topological Metric: We 
then propose a recommendation-tailored topological metric, Com-

mon Interacted Ratio (CIR), and demonstrate the capability of 
CIR to quantify the benefts of the messages from neighborhoods. 

• Novel Convolution beyond 1-WL for Recommendation: 
We integrate CIR into message-passing and propose a novel 
Collaboration-Aware Graph Convolutional Network (CAGCN). 
Then we prove that it can go beyond 1-WL test in distinguishing 
non-bipartite-subgraph-isomorphic graphs, show its superiority 
on real-world datasets including two newly collected ones, and 
provide an in-depth interpretation of its advantages. 

Next, we comprehensively analyze the collaborative efect captured 
by message-passing and propose CIR to measure whether the cap-
tured collaborative efect benefts the prediction of user preferences. 

2 ANALYSIS ON COLLABORATIVE EFFECT 
Let G = (V, E) be the user-item bipartite graph, where the node 
set V = U ∪ I includes the user set U and the item set I. Fol-
lowing previous work [9, 19, 37], we only consider the implicit 
user-item interactions and denote them as edges E where ��� rep-

resents the edge between node � and �. The network topology 
is described by its adjacency matrix A ∈ {0, 1}|V |× |V | 

, where 
A�� = 1 when ��� ∈ E, and A�� = 0 otherwise. Let N�� denote the 
set of observed neighbors that are exactly �-hops away from � and 
S� = (VS� 

, ES� 
) be the neighborhood subgraph [43] induced in G 

by Ne1 = N� 
1 ∪ {�}. We use �� 

�� to denote the set of shortest paths � 
of length � between node � and � and denote one of such paths as 

�� . Note that �� = ∅ if it is impossible to have a path between � �� �� 

and � of length � , e.g., �
11

1 = ∅ in an acyclic graph. Furthermore, 

we denote the initial embeddings of users/items as E0 ∈ R(�+�)×�
0 

where e0 = E� 
0 
and �� are the node �’s embedding and degree. � 

Following [9, 37], each node has no semantic features but purely 
learnable embeddings. Therefore, we remove the nonlinear trans-
formation by leveraging LightGCN [9] as the canonical architec-
ture and exclusively explore the collaborative efect captured by 
message-passing. LightGCN passes messages from user �/item �’s 
neighbors within �-hops to �/�: 

∑ ∑ 
� +1 � �+1 � e� = �� 

−0.5 � � 
−0.5e� , e� = �� 

−0.5 �� 
−0.5e� , (1) 

� ∈N1 � ∈N1 
� � 
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∀� ∈ {0, ..., �}. The propagated embeddings at all layers including 
the original embedding are aggregated together via mean-pooling: ∑� �∑ 

1 � 1 � e� = e� , e� = e� , ∀� ∈ U, ∀� ∈ I (2)(� + 1) (� + 1)
� =0 � =0 

In the training stage, for each observed user-item interaction (�, �), 
LightGCN randomly samples a negative item �− 

that � has never 
interacted with before, and forms the triple (�, �, �−), which collec-
tively forms the set of observed training triples O. After that, the 
ranking scores of the user over these two items are computed as 

⊤ ⊤��� = e� e� and ���− = e� e� − , which are fnally used in optimizing 
the pairwise Bayesian Personalized Ranking (BPR) loss [27]:∑ 

L
BPR = − ln � (��� − ���− ), (3) 

(�,�,� − ) ∈O 

where � (·) is the Sigmoid function, and we omit the �2 regulariza-

tion here since it is mainly for alleviating overftting and has no 
infuence on the collaborative efect captured by message passing. 

Under the above LightGCN framework, we expect to answer the 
following two questions: 

• �1: How does message-passing capture the collaborative efect 
and leverage it in computing users’ ranking? 

• �2: When do collaborations captured by message-passing beneft 
the computation of users’ ranking over items? 

Next, We address �1 by theoretically deriving users’ ranking over 
items under the message-passing framework of LightGCN and ad-
dress �2 by proposing the Common Interacted Ratio (CIR) to mea-

sure the benefts of leveraging collaborations from each neighbor 
in computing users’ ranking. The answers to the above two ques-
tions further motivate our design of Collaboration-Aware Graph 
Convolutional Network in Section 3. 

2.1 How does message-passing capture 
collaborative efect? 

The collaborative efect occurs when the prediction of a user’s pref-
erence relies on other users’ preferences or items’ properties [28]. 
Therefore, to answer �1, we need to seek whether we leverage 
other nodes’ embeddings in computing a specifc user’s ranking 
over items. In the inference stage of LightGCN, we take the inner 
product between user �’s embedding and item �’s embedding after 
�-layers’ message-passing to compute the ranking as1: ∑� ∑ ∑� ∑� ∑ ∑� 

�� 0 0 
�� = ( ��2 �

�
�� 
2 e� )

⊤( ��2 �
�
�� 
2 e� ), (4) 

�1=0 �
1 �2=�1 �1 =0 �

1 �2 =�1� ∈N � ∈N � Í Î �2
where ��2 = �

2 �
2 �

2 � −0.5�−0
� 
.5
(�
�2 = 0 if � = 

�� � ∈� ��� ∈� � � �� �� 
�� �� �� 

∅) denotes the total weight of all paths of length �2 from � to �, 
N� 

0 = {�} and specifcally, ��� 
0 = 1. ��2 is the weight measuring 

contributions of propagated embeddings at layer �2. Thus, based 
on Eq. (4), we present the answer to �1 as �1: �-layer LightGCN-
based message-passing captures collaborations between pairs of nodes 
{( �, �) | � ∈ 

Ð� 
=0 N�

� , � ∈ 
Ð� 

=0 N
� }, and the collaborative strength of 

� � � 
0 0each pair is determined by 1) e ⊤ e� : embedding similarity between 
� 

� and � , 2) {�� }� 
=0 ({�

� }� 
=0
): weight of all paths of length � to � 

�� � �� � 
from � to � (� to �), and 3) {�� }� 

=0
: the weight of each layer. 

� 

1
Detailed derivation is attached in Appendix A.2. 
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Figure 1: In (a)-(b), �1 has more interactions (paths) with (to) �’s neighborhood than �4 and hence is more representative of �’s 
purchasing behaviors than �4. In (c), we quantify CIR between �1 and � via the paths (and associated nodes) between �1 and N1 

� . 

2.2 When is the captured collaborative efect 
benefcial to users’ ranking? 

Although users could leverage collaborations from other users/items 
as demonstrated above, we cannot guarantee all of these collabo-
rations beneft the prediction of their preferences. For example, in 
Figure 1(a)-(b), �’s interacted item �1 has more interactions (paths) 
to �’s neighborhoods than �4 and hence is more representative of �’s 
purchasing behaviors [1, 4]. For each user �, we propose the Com-

mon Interacted Ratio to quantify the level of interaction between 
each specifc neighbor of � and �’s whole item neighborhood: 

Defnition 1. Common Interacted Ratio (CIR): For any item 
� ∈ N� 

1 
of user �, the CIR of � around � considering nodes up to b� (b� + 1)-hops away from �, i.e., �� ( �), is defned as the average 

interacted ratio of � with all neighboring items of � in N� 
1 
through 

paths of length ≤ 2b�: ∑ ∑ ∑ 
�b 1 �b 

1 
�� ( � ) = �2� , (5)

|N� 
1 | � ({N1 |� ∈ �2� }) 

� ∈N1 �=1 � 2� 2� � �� ∈� � �� �� 

∀� ∈ N� 
1 , ∀� ∈ U, where {N1 |� ∈ �2� } represents the set of the 

� �� 

1-hop neighborhood of node � along the path �2� from node � 
�� 

to � of length 2� including �, � . � is a normalization function to 
diferentiate the importance of diferent paths in �2� 

and its value 
�� 

depends on the neighborhood of each node along the path �2� 
�� . �

2� 

is the importance of paths of length 2� . b� 
As shown in Figure 1(c), �� ( �1) is decided by paths of lengthÍ

2 to 2b�. By confguring diferent b� and � , 1 
�
�� 
2� ∈�2 

�� 
� 
� ({N1 |� ∈� 2� }) 

� �� 

could express many graph similarity metrics [15, 17, 21, 30, 52] and 
we discuss them in Appendix A.1. For simplicity, henceforth we de-b� 
note �� ( �) as �� ( �). We next empirically verify the importance of 
leveraging collaborations from neighbors with higher CIR by incre-
mentally adding edges into an initially edge-less graph according 
to their CIR and visualizing the performance change. Specifcally, 
we consider the performance change in two settings, retraining and 
pretraining, which are visualized in Figure 2 and 3, respectively. In 
both of these two settings, we iteratively cycle each node and add 
its corresponding neighbor according to the CIR until hitting the 
budget. Here we consider variants of CIR that we later defne in 
Section 4.1 with further details in Appendix A.1. 

Figure 2: The training loss (left) is lower and the performance 
(right) is higher when adding edges according to the variant 
CIR-lhn (Leicht Holme Nerman) than adding randomly un-
der the same addition budget. Detailed experimental settings 
and more results are provided in Appendix A.5.1. 

For the re-training setting, we frst remove all observed edges in 
the training set to create the edgeless bipartite graph and then in-
crementally add edges according to their CIR and retrain user/item 
embeddings. In Figure 2, we evaluate the performance on the newly 
constructed bipartite graph under diferent edge budgets. Clearly, 
the training loss/performance becomes lower/higher when adding 
more edges because message-passing captures more collaborative 
efects. Furthermore, since edges with higher CIR connect neigh-
bors with more connections to the whole neighborhood, optimizing 
embeddings of nodes incident to these edges pull the whole neigh-
borhood closer and hence leads to the lower training loss over neigh-
borhoods’ connections, which causes the overall lower training loss 
in Figure 2(a). In Figure 2(b), we observe that under the same adding 
budget, adding according to CIRs achieves higher performance than 
adding randomly. It is because neighbors with higher interactions 
with the whole neighborhood are more likely to have higher in-
teractions with neighbors to be predicted (We empirically verify 
this in Table 5.). Then for each user, maximizing its embedding 
similarity to its training neighbors with higher CIR will indirectly 
improve its similarity to its to-be-predicted neighbors, which leads 
to lower population risk and higher generalization/performance. 
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Figure 3: The performance of adding edges according to CIR 
variants generally increases faster than adding randomly 
after pre-training. See Appendix A.5.2 for more results. 

For the pre-training setting, we frst pre-train user/item em-

beddings on the original bipartite graph and then propagate the 
pre-trained embeddings on the newly constructed bipartite graph 
under diferent edge budgets. This setting is more realistic since 
in the real world, with the exponential interactions streamingly 
coming in [36] while the storage space is limited, we are forced to 
keep only partial interactions and the pre-trained user/item embed-

dings. Figure 3 demonstrates that under the same adding budget, 
keeping edges according to CIR leads to higher performance than 
keeping randomly, which further verifes the efectiveness of CIR in 
quantifying the edge importance. An interesting observation is that 
adding more edges cannot always bring performance gain as shown 
in Figure 3(a) when the ratio of added edges is between 0%-20%. We 
hypothesize there are two reasons. From network topology, only 
when edges are beyond a certain level can the network form a giant 
component so that users could receive enough neighborhood infor-
mation. Secondly, from representation learning, more nodes would 
have inconsistent neighborhood contexts between the training and 
the inference when only a few edges are added. Such inconsistent 
neighborhood context would compromise the performance and 
will be alleviated when more edges are added as shown later in 
Figure 3(a). Furthermore, diferent CIR variants cause diferent in-
creasing speeds of performance. For example, sc is faster on Loseit 
in Figure 3(a) while lhn is faster on Amazon in Figure 3(b). Except 
for the cn, jc/sc/lhn lead to faster improvement than the random 
one, which highlights the potential of CIR in devising cost-efective 
strategies for pruning edges in the continual learning [35]. 

From the above analysis, we summarize the answer �2 to �2 as: 
Leveraging collaborations from �’s neighboring node � with higher 
CIR �� ( �) would cause more benefts to �’s ranking. 

3 COLLABORATION-AWARE GRAPH 
CONVOLUTIONAL NETWORKS 

The former section demonstrates that passing messages according 
to neighbors’ CIR is crucial in improving users’ ranking. This moti-

vates us to propose a new graph convolution operation, Collaboration-
Aware Graph Convolution(CAGC), which passes node messages 
based on the benefts of their provided collaborations. Furthermore, 
we wrap the proposed CAGC within LightGCN and develop two 
CAGC-based models. 

3.1 Collaboration-Aware Graph Convolution 
The core idea of CAGC is to strengthen/weaken the messages passed 
from neighbors with higher/lower CIR to center nodes. To achieve 
this, we compute the edge weight as: ( 

�� ( �), if A� � > 0 
�� � =

= 0 
, ∀�, � ∈ V (6)

0, if A� � 

where �� ( �) is the CIR of neighboring node � centering around � . 
Note that unlike the symmetric graph convolution D−0.5AD−0.5 

used in LightGCN, here � is unsymmetric. This is rather inter-
pretable: the interacting level of node � with �’s neighborhood is 
likely to be diferent from the interacting level of node � with � ’s 
neighborhood. We further normalize � and combine it with the 
LightGCN convolution: ∑ 

�� � � +1 � e = �(�� Í , �−0.5�−0.5)e� , ∀� ∈ V (7)� � � 
� ∈N1 ��� 

� ∈N1 � 
� 

where �� is a coefcient that varies the total amount of messages 
fowing to node � and controls its embedding magnitude [24]. � is a 
function combining the edge weights computed based on CIR and 
LightGCN. We could either simply set � as the weighted summation 
of these two propagated embeddings or learn � by parametrization. 
Next, we prove that for certain choices of �, CAGC can go beyond 
1-WL in distinguishing non-bipartite-subgraph-isomorphic graphs. 
First, we prove the equivalence between the subtree-isomorphism 
and the subgraph-isomorphism in bipartite graphs: 

Theorem 1. In bipartite graphs, two subgraphs that are subtree-
isomorphic if and only if they are subgraph-isomorphic2 . 

Proof. We prove this theorem in two directions. Firstly (=⇒), 
we prove that in a bipartite graph, two subgraphs that are subtree-
isomorphic are also subgraph-isomorphic by contradiction. Assum-

ing that there exists two subgraphs S� and S� that are subtree-
isomorphic yet not subgraph-isomorphic in a bipartite graph, i.e., 
S� �������� S� and S� ��������ℎ S� . By defnition of subtree-

� � 
isomorphism, we trivially have e� = e

ℎ (�) , ∀� ∈ VS� 
. Then to 

guarantee S� ��������ℎ S� and also since edges are only allowed 
to connect � and its neighbors N� 

1 
in the bipartite graph, there must 

exist at least an edge ��� between � and one of its neighbors � ∈ N1 
� 

such that ��� ∈ ES� 
, �ℎ (� )ℎ (�) ∉ ES� , which contradicts the as-

sumption that S� �������� S� . Secondly (⇐=), we can prove that in 
a bipartite graph, two subgraphs that are subgraph-isomorphic are 
also subtree-isomorphic, which trivially holds since in any graph, 
subgraph-isomorphism leads to subtree-isomorphism [43]. □ 

Since 1-WL test can distinguish subtree-isomorphic graphs [43], 
the equivalence between these two isomorphisms indicates that 
in bipartite graphs, both of the subtree-isomorphic graphs and 
subgraph-isomorphic graphs can be distinguished by 1-WL test. 
Therefore, to go beyond 1-WL in bipartite graphs, we need to pro-
pose a novel graph isomorphism, bipartite-subgraph-isomorphism 
in Defnition 2, which is even harder to be distinguished than the 
subgraph-isomorphism by 1-WL test. 

2
Defnitions of subtree-/subgraph-isomorphism are in Supplementary B.4 [43]. 
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Defnition 2. Bipartite-subgraph-isomorphism: S� and S� are 
bipartite-subgraph-isomorphic, denoted as S� ��� −�������ℎ S� , if 
there exists a bijective mapping ℎ : Ne� 

1 ∪ N2 → Ne1 ∪ N2 
such� � � 

that ℎ(�) = � and ∀�, � ′ ∈ Ne� 
1 ∪N� 

2
, ��� ′ ∈ E ⇐⇒ �ℎ (�)ℎ (� ′ ) ∈ E 

� � � � 
and e� = e = e .

ℎ (� ) , e� ′ ℎ (� ′ ) 

Lemma 1. If � is multilayer perceptron (MLP), then we have that e � � �({(�� �� � , e ) | � ∈ N1}, {(� −0.5� −0.5 , e ) | � ∈ N1}) is injective. 
� � � � � � 

Proof. If we assume that all node embeddings share the same 
discretization precision, then embeddings of all nodes in a graph 
can form a countable set H . Similarly, for each edge in a graph, its 
CIR-based weight �e� � and degree-based weight � −0.5�−0.5 

can also 
� � 

form two diferent countable sets W1, W2 with |W1 | = |W2 |. Then 
P1 = {�e� � e� |�e� � ∈ W1, e� ∈ H}, P2 = {� −0.5�

� 
−0.5e� |� −0.5�

� 
−0.5 ∈

� � 
W2, e� ∈ H} are also two countable sets. Let �1, �2 be two multi-

sets containing elements from P1 and P2, respectively, and |�1 | = 
|�2 |. Then by Lemma 1 in [43], there exists a function � such that 
� (�1, �2) = 

Í 
�1 ∈�1,�2 ∈�2 

� (�1, �2) is unique for any distinct pair of 
multisets (�1, �2). Since the MLP-based g is a universal approxima-

tor [45] and hence can learn � , we know that � is injective. □ 

Theorem 2. Let M be a GNN with sufcient number of CAGC-
based convolution layers defned by Eq. (7). If � is MLP, then M is 
strictly more expressive than 1-WL in distinguishing subtree-isomorphic 
yet non-bipartite-subgraph-isomorphic graphs. 

Proof. We prove this theorem in two directions. Firstly (=⇒), 
following [43], we prove that the designed CAGC here can distin-
guish any two graphs that are distinguishable by 1-WL by contra-
diction. Assume that there exist two graphs G1 and G2 which can 
be distinguished by 1-WL but cannot be distinguished by CAGC. 
Further, suppose that 1-WL cannot distinguish these two graphs in 
the iterations from 0 to � − 1, but can distinguish them in the �th 

iteration. Then, there must exist two neighborhood subgraphs S� 
and S� whose neighboring nodes correspond to two diferent sets 

� � 
of node labels at the �th 

iteration, i.e., {e� |� ∈ N� 
1} ≠ {e

� | � ∈ N� 
1}. 

Since � is injective by Lemma 1, for S� and S� , � would yield two 
diferent feature vectors at the �th 

iteration. This means that CAGC 
can also distinguish G1 and G2, which contradicts the assumption. 

Secondly (⇐=), we prove that there exist at least two graphs 
that can be distinguished by CAGC but cannot be distinguished by 
1-WL. Figure 11 in Supplementary B.4. presents two of such graphs 
S� , S� 

′ 
, which are subgraph isomorphic but non-bipartite-subgraph-

isomorphic. Assuming� and� ′ have exactly the same neighborhood 
feature vectors e, then directly propagating according to 1-WL or 
even considering node degree as the edge weight as GCN [13] can 
still end up with the same propagated feature for � and � ′ . However, 
if we leverage JC to calculate CIR as introduced in Appendix A.1, 
then we end up with {(��� �1 )−0.5e, (��� �2 )−0.5e, (��� �3 )−0.5e} ≠ 

{(�−0.5�−′ 0.5 +�e� ′ � ′ )e, (�−0.5�−′ 0.5 +�e� ′ � ′ )e, (�−0.5�−′ 0.5 +�e� ′ � ′ )e}.� ′ � 1 � ′ � 2 � ′ � 3
1 2 3

Since � is injective by Lemma 1, CAGC would yield two diferent 
embeddings for � and � ′ . □ 

Theorem 2 indicates that GNNs whose aggregation scheme is 
CAGC can distinguish non-bipartite-subgraph-isomorphic graphs 
that are indistinguishable by 1-WL. 

3.2 Model Architecture and Complexity 
Following the principle of LightGCN that the designed graph con-
volution should be light and easy to train, except for the message-

passing component, all other components of our proposed CAGC-
based models is exactly the same as LightGCN including the average 
pooling and the model training, which have already been covered in 
Section 2. We provide the detailed time/space complexity compari-

son between our models and all other baselines in Appendix A.3. 
We visualize the architecture of CAGC-based models in Figure 4. 
Based on the choice of �, we have two specifc model variants. For 
the frst variant CAGCN, we calculate the edge weight solely based 
on CIR in message-passing by setting �(�, �) = � in Eq.(7) and set 
�� = 

Í 
� ∈N1 �� 

−0.5�� 
−0.5 

to ensure that the total edge weights for 
�

messages received by each node are the same as the one in Light-
GCN. For CAGCN*, we set � as the weighted summation and set 
�� = � as a constant controlling the trade-of between contributions 
from message-passing by LightGCN and by CAGC. We term the 
model variant as CAGCN(*)-jc if we use Jaccard Similarity (JC) [17] 
to compute �. The same rule applies to other topological metrics 
listed in Appendix A.1. Concrete equations of CAGCN and CAGCN* 
are provided in Appendix A.4.2. 

Figure 4: The architecture of the proposed CAGCN(*). 

4 EXPERIMENTS 
In this section, we conduct experiments to evaluate CAGCN(*). 

4.1 Experimental Settings 
4.1.1 Datasets. Following [9, 37], we validate the proposed ap-
proach on Gowalla, Yelp, Amazon, and Ml-1M, the details of 
which are provided in [9, 37]. Moreover, we collect two extra 
datasets to further demonstrate the superiority of our proposed 
model in even broader user-item interaction domains: (1) Loseit: 
This dataset is collected from subreddit loseit - Lose the Fat3 

from 
March 2020 to March 2022 where users discuss healthy and sus-
tainable methods of losing weight via posts. To ensure the quality 
of this dataset, we use the 10-core setting [8], i.e., retaining users 
and posts with at least ten interactions. (2) News: This dataset 
includes the interactions from subreddit World News4 

where users 
share major news around the world via posts. Similarly, we use the 
10-core setting to ensure the quality of this dataset. We summarize 
the statistics of all six datasets in Table 2. 
3
https://www.reddit.com/r/loseit/

4
https://www.reddit.com/r/worldnews/ 
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Table 1: Performance comparison of CAGCN(*) with baselines. The best and runner-up results are in bold and underlined. 

Model Metric MF NGCF LightGCN UltraGCN 
-jc 

CAGCN 
-sc -cn -lhn -jc 

CAGCN* 
-sc -lhn 

Gowalla 
Recall@20 
NDCG@20 

0.1554 
0.1301 

0.1563 
0.1300 

0.1817 
0.1570 

0.1867 
0.1580 

0.1825 
0.1575 

0.1826 0.1632 
0.1577 0.1381 

0.1821 
0.1577 

0.1878 
0.1591 

0.1878 
0.1588 

0.1857 
0.1563 

Yelp2018 
Recall@20 
NDCG@20 

0.0539 
0.0460 

0.0596 
0.0489 

0.0659 
0.0554 

0.0675 
0.0553 

0.0674 
0.0564 

0.0671 0.0661 
0.0560 0.0546 

0.0661 
0.0555 

0.0708 
0.0586 

0.0711 
0.0590 

0.0676 
0.0554 

Amazon 
Recall@20 
NDCG@20 

0.0337 
0.0265 

0.0336 
0.0262 

0.0420 
0.0331 

0.0682 
0.0553 

0.0435 
0.0343 

0.0435 0.0403 
0.0342 0.0321 

0.0422 
0.0333 

0.0510 
0.0403 

0.0506 
0.0400 

0.0457 
0.0361 

Ml-1M 
Recall@20 
NDCG@20 

0.2604 
0.2697 

0.2619 
0.2729 

0.2752 
0.2820 

0.2783 
0.2638 

0.2780 
0.2871 

0.2786 0.2730 
0.2881 0.2818 

0.2760 
0.2871 

0.2822 
0.2775 

0.2827 
0.2776 

0.2799 
0.2745 

Loseit 
Recall@20 
NDCG@20 

0.0539 
0.0420 

0.0574 
0.0442 

0.0588 
0.0465 

0.0621 
0.0446 

0.0622 
0.0474 

0.0625 0.0502 
0.0470 0.0379 

0.0592 
0.0461 

0.0654 
0.0486 

0.0658 
0.0484 

0.0658 
0.0489 

News 
Recall@20 
NDCG@20 

0.1942 
0.1235 

0.1994 
0.1291 

0.2035 
0.1311 

0.2034 
0.1301 

0.2135 
0.1385 

0.2132 0.1726 
0.1384 0.1064 

0.2084 
0.1327 

0.2182 
0.1405 

0.2172 
0.1414 

0.2053 
0.1311 

Avg. Rank 
Recall@20 
NDCG@20 

9.83 
9.50 

9.17 
9.17 

7.33 
5.83 

4.17 
6.00 

4.67 
3.67 

4.33 8.83 
4.00 8.33 

6.17 
5.00 

1.67 
2.50 

1.50 
2.50 

3.33 
5.17 

jc-Jacard Similarity, sc-Salton Cosine Similarity, cn-Common Neighbors, lhn-Leicht-Holme-Nerman 

Table 2: Basic dataset statistics. 

Dataset # Users # Items # Interactions Density 
Gowalla 29, 858 40, 981 1, 027, 370 0.084% 
Yelp 31, 668 38, 048 1, 561, 406 0.130% 
Amazon 52, 643 91, 599 2, 984, 108 0.062% 
Ml-1M 6, 022 3, 043 895, 699 4.888% 
Loseit 5, 334 54, 595 230, 866 0.08% 
News 29, 785 21, 549 766, 874 0.119% 

*Yelp: Yelp2018; *Amazon: Amazon-Books;*Ml-1M: Movielens-1M. 

4.1.2 Baseline methods. We compare our model with MF, NGCF, 
LightGCN, UltraGCN, GTN [4, 9, 19, 27, 37]. Details of them are 
clarifed in Appendix A.4.1. Since here the purpose is to evaluate the 
efectiveness of CAGC-based message-passing, we only compare 
with baselines that focus on graph convolution (besides the classic 
MF) including the state-of-the-art GNN-based recommendation 
models (i.e., UltraGCN and GTN). Note that our work could be fur-
ther enhanced if incorporating other techniques such as contrastive 
learning to derive self-supervision but stacking these would side-
track the main topic of this paper, graph convolution, so we leave 
them as one future direction. 
4.1.3 Evaluation Metrics. Two popular metrics: Recall and Nor-
malized Discounted Cumulative Gain(NDCG) [37] are adopted for 
evaluation. We set the default value of K as 20 and report the average 
of Recall@20 and NDCG@20 over all users in the test set. During 
inference, we treat items that the user has never interacted with in 
the training set as candidate items. All models predict users’ prefer-
ence scores over these candidate items and rank them based on the 
computed scores to further calculate Recall@20 and NDCG@20. 

4.2 Performance Comparison 
We frst compare our proposed CAGCN-variants with LightGCN. 
In Table 1, CAGCN-jc/sc/lhn achieves higher performance than 
LightGCN because we aggregate more information from nodes with 
higher CIR(jc, sc, lhn) that bring more benefcial collaborations as 
justifed in Section 2.2. CAGCN-cn generally performs worse than 
LightGCN because nodes having more common neighbors with 
other nodes tend to have higher degrees and blindly aggregating 
information more from these nodes would cause false-positive link 

Table 3: Performance comparison of CAGCN* with GTN. 

Model Metric GTN 
-jc 

CAGCN* 
-sc -lhn 

Gowalla 
Recall@20 
NDCG@20 

0.1870 
0.1588 

0.1901 
0.1604 

0.1899 
0.1603 

0.1885 
0.1576 

Yelp2018 
Recall@20 
NDCG@20 

0.0679 
0.0554 

0.0731 
0.0605 

0.0729 
0.0601 

0.0689 
0.0565 

Amazon 
Recall@20 
NDCG@20 

0.0450 
0.0346 

0.0573 
0.0456 

0.0575 
0.0458 

0.0520 
0.0409 

prediction. Since diferent datasets exhibit diferent patterns of 2nd-
order connectivity, there is no fxed topological metric that performs 
the best among all datasets. For example, CAGCN-jc performs better 
than CAGCN-sc on Yelp and News, while worse on Gowalla, Ml-1M. 

Then, we compare CAGCN*-variants with other baselines. We 
omit CAGCN*-cn here due to the worse performance of CAGCN-cn 
than LightGCN. We can see that CAGCN*-jc/sc almost consistently 
achieves higher performance than other baselines except for Ultra-
GCN on Amazon. This is because UltraGCN allows multiple nega-
tive samples for each positive interaction, e.g., 500 negative samples 
here on Amazon

5
, which lowers the efciency as we need to spend 

more time preparing a large number of negative samples per epoch. 
Among the baselines, UltraGCN exhibits the strongest performance 
because it approximates the infnite layers of message passing and 
constructs the user-user graphs to capture 2nd-order connectivity. 
LightGCN and NGCF perform better than MF since they inject the 
collaborative efect directly through message-passing. 

To align the setting with GTN, we increase the embedding size 
�0 

to 256 following [4]6 
and observe the consistent superiority of 

our model over GTN in Table 3. This is because in GTN [4], the 
edge weights for message-passing are still computed based on node 
embeddings that implicitly encode noisy collaborative signals from 
unreliable interactions. Conversely, our CAGCN* directly alleviates 
the propagation on unreliable interactions based on its CIR value, 
which removes noisy interactions from the source. 

5
UltraGCN negative samples: 1500/800/500/200 on Gowalla/Yelp2018/Amazon/Ml-1M. 

6
As the user/item embedding is a signifcant hyperparameter, it is crucial to ensure the 
same embedding size when comparing models; thus, we separately compare against 
GTN using their larger embedding size. 
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Table 4: Efciency comparison of CAGCN* with LightGCN. 
For fair comparison, we track the frst time CAGCN* achieves 
the best performance of LightGCN. 
Model Stage Gowalla Yelp Amazon Ml-1M Loseit News 
LightGCN Training 16432.0 28788.0 81976.5 18872.3 39031.0 13860.8 

Preprocess 167.4 281.6 1035.8 33.8 31.4 169.0 
CAGCN* Training 2963.2 1904.4 1983.9 11304.7 10417.7 1088.4 

Total 3130.6 2186.0 3019.7 11338.5 10449.1 1157.4 

Improve 
Training 
Total 

82.0% 
80.9% 

93.4% 
92.4% 

97.6% 
96.3% 

40.1% 
39.9% 

73.3% 
73.2% 

92.1% 
91.6% 

Figure 5: Training time (s) of diferent models. 

4.3 Efciency Comparison 
As recommendation models will be eventually deployed in user-
item data of real-world scale, it is crucial to compare the efciency 
of the proposed CAGCN(*) with other baselines. To guarantee a 
fair comparison, we use a uniform code framework implemented 
ourselves for all models and run them on the same machine with 
Ubuntu 20.04 system, AMD Ryzen 9 5900 12-Core Processor (3.0 
GHz), 128 GB RAM and GPU NVIDIA GeForce RTX 3090. We report 
the Recall@20 on Yelp and NDCG@20 on Loseit achieved by the 
best CAGCN(*) variant based on Table 1. We track the performance 
and the training time per 5 epochs. Complete results are included 
in Supplementary B.3. In Figure 5(a)-(b), CAGCN achieves higher 
performance than LightGCN in less time. We hypothesize that for 
each user, its neighbors with higher interactions with its whole 
neighborhood would also have higher interactions with its inter-
acted but unobserved neighbors. Then as CAGCN aggregate more 
information from these observed neighbors that have higher inter-
actions with the whole neighborhood, it indirectly enables the user 
to aggregate more information from its to-be-predicted neighbors. 

To verify the above hypothesis, we defne the to-be-predicted 
neighborhood set of user � in the testing set as Nb� 

1 
and for each b

neighbor � ∈ N� 
1
, calculate its CIR �b 

�
� ( �) with nodes in Nb� 

1
. Then 

we compare the ranking consistency among CIRs calculated from 
training neighborhoods (i.e., �� ( �)), from testing neighborhoods 
(i.e., �b� ( �)) and from full neighborhoods (we replace b� with N� 

1∪N1 

Nb� 
1 
in Eq. (5)). Here we respectively use four topological metrics 

(JC, SC, LHN, and CN) to defne � and rank the obtained three lists. 
Then, we measure the similarity of the ranked lists between Train-
Test and between Train-Full by Rank-Biased Overlap (RBO) [42]. 
The averaged RBO values over all nodes � ∈ V on three datasets 
are shown in Table 5. It is clear that the RBO values on all these 
datasets are beyond 0.5, which verifes our hypothesis. The RBO 
value between Train-Full is always higher than the one between 
Train-Test because most interactions are in the training set. 

Table 5: Average Rank-Biased Overlap (RBO) of the ranked 
neighbor lists between training (i.e., N� 

1) and testing/full (i.e., 
Nb� 

1 and N� 
1∪ Nb� 

1, respectively) dataset over all nodes � ∈ U. 
Metric 

Gowalla 
Train-Test Train-Full 

Yelp 
Train-Test Train-Full 

Ml-1M 
Train-Test Train-Full 

JC 0.604±0.129 0.902±0.084 0.636±0.124 0.897±0.081 0.848±0.092 0.978±0.019 
SC 0.611±0.127 0.896±0.084 0.657±0.124 0.900±0.077 0.876±0.077 0.983±0.015 
LHN 0.598±0.121 0.974±0.036 0.578±0.100 0.976±0.029 0.845±0.082 0.987±0.009 
CN 0.784±0.120 0.979±0.029 0.836±0.100 0.983±0.023 0.957±0.039 0.995±0.006 

Moreover, by combining two views of propagations, one from 
CAGC and one from LightGCN, CAGCN* achieves even higher 
performance with even less time. This is because keeping aggregat-
ing more information from neighbors with higher CIR (as CAGCN 
does) would prevent each user from aggregating information from 
his/her other neighbors. In addition, we report the frst time that 
our best CAGCN* variant achieves the best performance of Light-
GCN on each dataset in Table 4. We also report the preprocessing 
time for pre-calculating the CIR matrix � for our model to avoid 
any bias. We could see that even considering the preprocessing 
time, it still takes signifcantly less time for CAGCN* to achieve the 
same best performance as LightGCN, which highlights the broad 
prospects to deploy CAGCN* in real-world recommendations. 

4.4 Further Probe 
4.4.1 Performance grouped by node degrees. Here we group nodes 
by degree and visualize the average performance of each group. 
Comparing non-graph-based models (e.g., MF), graph-based mod-

els (e.g., LightGCN, CAGCN(*)) achieve higher performance for 
lower degree nodes [0, 300) while lower performance for higher 
degree nodes [300, Inf). Since node degree follows the power-law 
distribution [32], the average performance of graph-based models 
is still higher than MF. On one hand, graph-based models leverage 
neighborhood to augment the weak supervision for low-degree 
nodes. On the other hand, they introduce noisy interactions for 
higher-degree nodes. It is also interesting to see the opposite per-
formance trends under diferent evaluation metrics: NDCG prefers 
high-degree nodes while recall prefers low-degree nodes. This indi-
cates that diferent evaluation metrics have diferent sensitivity to 
node degrees and an unbiased node-centric evaluator is desired. 
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Figure 6: Performance w.r.t. node degree on Gowalla. A simi-
lar trend is seen on Yelp in Supplementary B.2. 
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Figure 7: In (a)-(b), the performance frst increases since we capture higher-layer neighborhood information and higher-hop 
topological interaction in calculating CIR as �, b� increase from 1 to 3. However, the performance decreases in (a) as � increases 
due to over-smoothing. In (c)-(d), we add the global top edges directly (rather than cycle each node) according to their CIR. 
More details are provided in Appendix A.5.2. 
4.4.2 Impacts of propagation layers � and neighborhood hops b�. 
Figure 7(a)-(b) visualize the performance of CAGCN* and Light-
GCN when the propagation layer � in Eq. (2) and the neighborhood 
hop b� in Eq. (5) increase. In (a), the performance frst increases as � 
increases from 1 to 3 due to the incorporation of high-layer neigh-
borhood information and then decreases due to over-smoothing. 
More importantly, our CAGCN* is always better than LightGCN 
at all propagation layers. In (b), the performance consistently in-
creases as the number of neighborhood hops increases because we 
are allowed to consider even more higher topological interactions 
among each node’s neighborhood in computing CIR. 

4.4.3 Adding edges globally according to CIR.. Figure 7(c)-(d) visu-
alize the performance change when we add edges randomly and 
according to CIR. Unlike Figure 2-3 where we add edges by cycling 
each node, here we directly select the global top edges regardless 
of each center node according to their CIR and then evaluate the 
LightGCN with the pre-trained user-item embeddings. In the frst 
stage, we observe a similar trend that adding edges according to JC, 
SC, and LHN leads to faster performance gain. However, since we 
don’t cycle over each node, we would keep adding so many edges 
with larger CIR to the same node, which fails to bring performance 
gain anymore and hence cannot maximize our performance beneft 
under the node-centric evaluation metric. 

5 RELATED WORK 
Collaborative Filtering & Recommendation. Collaborative fl-
tering (CF) predicts users’ interests by utilizing the preferences of 
other users with similar interests [5]. Early CF methods used Matrix 
Factorization techniques [14, 26, 27, 33] to capture CF efect via 
optimizing users/items’ embeddings over historical interactions. 
Stepping further, Graph-based methods either leverage topological 
constraints or message-passing to inject the CF efect into user/item 
embeddings [9, 37]. ItemRank and BiRank [6, 10] perform label prop-
agation and compute users’ ranking based on structural proximity 
between the observed and the target items. To make user prefer-
ences learnable, HOP-Rec [46] combines the graph-based method 
and the embedding-based method. Yet, interactions captured by 
random walks there do not fully explore the high-layer neighbors 
and multi-hop dependencies [39]. By contrast, GNN-based meth-

ods are superior at encoding higher-order structural proximity in 
user/item embeddings [9, 37]. Recent work [1, 4, 34] has demon-

strated that not all captured collaborations improve users’ ranking. 
[1] proposes to learn binary mask and impose low-rank regular-
ization while ours propose novel topological metric CIR to weigh 

neighbors’ importance. [4] smooths nodes’ embeddings based on 
degree-normalized embedding similarity, while ours adaptively 
smooth based on topological proximity(CIR). [34] denoises interac-
tions/preserve diversity based on 1-layer propagated embeddings 
and hence cannot go beyond 1-WL test, while ours keep neighbors 
and does not focus on diversity issues. 
Link Prediction. As a generalized version of recommendation, 
link prediction fnds applications in predicting drug interactions 
and completing knowledge graphs [22, 29]. Early studies adopt 
topological heuristics to score node pairs [15, 21, 52]. Furthermore, 
latent-based/deep-learning methods [25, 48] are proposed to char-
acterize underline topological patterns in node embeddings via ran-
dom walks [7] or regularizing [25]. To fully leverage node features, 
GNN-based methods are proposed and achieve unprecedented suc-
cess owing to the use of the neural network to extract task-related 
information and the message-passing capture the topological pat-
tern [23, 49, 51]. Recently, eforts have been invested in developing 
expressive GNNs that can go beyond the 1-WL test [18, 43, 50] 
for node/graph classifcation. Following this line, our work devel-
ops a recommendation-tailored graph convolution with provably 
expressive power in predicting links between users and items. 

6 CONCLUSION 
In this paper, we fnd that the message-passing captures collabora-
tive efect by leveraging interactions between neighborhoods. The 
strength of the captured collaborative efect depends the embedding 
similarity, the weight of paths and the contribution of each propaga-
tion layer. To determine whether the captured collaborative efect 
would beneft the prediction of user preferences, we propose the 
Common Interacted Ratio (CIR) and empirically verify that leverag-
ing collaborations from neighbors with higher CIR contributes more 
to users’ ranking. Furthermore, we propose CAGCN(*) to selectively 
aggregate neighboring nodes’ information based on their CIRs. 
We further defne a new type of isomorphism, bipartite-subgraph-
isomorphism, and prove that our CAGCN* can be more expres-
sive than 1-WL in distinguishing subtree(subgraph)-isomorphic yet 
non-bipartite-subgraph-isomorphic graphs. Experimental results 
demonstrate the advantages of the proposed CAGCN(*) over other 
baselines. Specifcally, CAGCN* outperforms the most representa-
tive graph-based recommendation model, LightGCN [9], by around 
10% in Recall@20 but also achieves roughly more than 80% speedup. 
In the future, we will explore the imbalanced performance improve-

ment among nodes in diferent degree groups as seen in Figure 6, 
especially from the perspective of GNN fairness [38, 41]. 
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A APPENDIX 

A.1 Graph Topological Metrics for CIR b� 
Here we demonstrate that by confguring diferent � and b�, �� ( �)
can express many existing graph similarity metrics. ∑ ∑� ∑ 

�b 1 
b 

1 
�� ( �) = �2� (8)
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• Jaccard Similarity (JC) [17]: The JC score measures the simi-

larity between neighborhood sets as the ratio of the intersection 
of two neighborhood sets to the union of these two sets: 

|N1 ∩ N1 |
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• Salton Cosine Similarity (SC) [30]: The SC score measures the 
cosine similarity between the neighborhood sets of two nodes: 

|N1 ∩ N1 |
� � 

SC(�, � ) = √ (11) 
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• Common Neighbors (CN) [21]: The CN score measures the 
number of common neighbors of two nodes and is frequently 
used for measuring the proximity between two nodes: 

CN(�, � ) = |N� 
1 ∩ N� 

1 | (13) 

Let b� = 1 and set � ({N1 |� ∈ �2 }) = 1, then we have: 
� �� 
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Since CN does not contain any normalization to remove the bias 
of degree in quantifying proximity and hence performs worse 
than other metrics as demonstrated by our recommendation 
experiments in Table 1. 

• Leicht-Holme-Nerman (LHN) [15]: LHN is very similar to SC. 
However, it removes the square root in the denominator and is 
more sensitive to the degree of node: 

|N1 ∩ N1 |
� � 

LHN(�, � ) = (15)
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We further emphasize that our proposed CIR is a generalized ver-
sion of these four existing metrics and can be delicately designed 
toward satisfying downstream tasks and datasets. We leave such 
exploration on the choice of � as one potential future work. 
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A.2 Derivation of Eq. (4) 
The matrix form of computing the ranking of user � over item � 
after �-layer LightGCN-based message-passing: 

� � � � ∑ ∑ ∑ ∑ 
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(17) 
where ��1 is the layer contribution and LightGCN uses mean-pooling, 
i.e., 1 

in Eq. (2). For the propagated embedding at a specifc layer 
� 
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is the set of all nodes having paths of length �1 to � and can be 

expressed as: 
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Substituting Eq. (19) into Eq. (18), we have: 
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Then the aggregation of all � layers’ embeddings of user � is ex-
pressed as: 
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Eq. (22) means that for each length �1 ∈ {0, 1, ..., �}, for each node 

� ∈ V�1 
that has path of length �1 to �, we propagate its embed-� 

ding over each path ��1 ∈ ��1 
with the corresponding weight 
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Since nodes that are �1-hops away from � cannot have paths of 
length less than �1, we reorganize Eq. (22) by frst considering the 
hop of each node and then considering the length of each path, 
which leads to: 
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Then by substituting Eq. (23) into Eq. (17), we end up with: 
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where N0 = {�} and specifcally, �0 
is the weight mea-� �� = 1. ��2 

suring contributions of propagated embeddings at layer �2. 
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A.3 Complexity Comparison and Analysis 
Let |V|, |E |, |F | be the total number of nodes, edges, and feature 
dimensions (assuming feature dimensions stay the same across all 
feature transformation layers). Let � be the propagation layer for 
all graph-based models using message-passing. Let � be the total 
number of negative samples per epoch per positive pair and � 
be the number of 2nd-order neighbors. For � , all baselines use 1 
per epoch per positive pair and hence can be omitted (aside from 
UltraGCN using a larger number). Then the complexity of each 
model is summarized in Table 6. For CAGCN, since we only con-
sider 2-hops away connections to compute CIR in Eq. (5), the main 
computational load would be computing the power of adjacency 
matrix, which takes O(|V|3). Note that for both of our CAGCN 
and UltraGCN, we can apply Strassens’s Algorithm to further re-
duce the O(|V|3) to O(|V|2.8). In Table 4 in Section 4.3, we report 
the preprocessing time for each dataset. Clearly, compared with 
the time used for training, the time for preprocessing is minor, 
which even demonstrates the superior efciency of CAGCN since 
it signifcantly speeds up the training as justifed in Section 4.3. 

Table 6: Complexity of the pre-procession and the forward 
pass of CAGCN and diferent baselines. 

Model MF NGCF LightGCN 
# Extra Hyper-parameters / / 1 

/ O( | E | + |V | ) O( | E | + |V | ) 
Preprocess 

Space 
Time / O( | E | + |V | ) O( | E | + |V | ) 
Space O( |V |� ) O(� |V |� + | E | + �� 2 ) O(� |V |� + | E | ) 

Training 
Time O( | E |� ) O(� ( | E |� + |V |� 2 ) ) O(� | E |� + � |V |� )

Model GTN UltraGCN CAGCN 
# Extra Hyper-parameters 1 7 2 

O( | E | + |V | ) O( | E | + |V | ) O( | E | + |V | ) 
Preprocess 

Space 
Time O( | E | + |V | ) O( |V |3 ) O( |V |3 )
Space O(� |V |� + | E | ) O( |V |� + |V |� ) O(� |V |� + | E | ) 

Training 
Time O(� | E |� + � |V |� ) O(� ( | E | + |� |� )� ) O(� | E |� + � |V |� ) 

A.4 Experimental Setting 
A.4.1 Baselines. We compare our proposed CAGCN(*) with the 
following baselines: MF [27]: Most classic collaborative fltering 
method equipped with the BPR loss; NGCF [37]: The frst GNN-
based collaborative fltering model; LightGCN [9]: The most popu-
lar GNN-based collaborative fltering model, which removes feature 
transformation and nonlinear activation; UltraGCN [19]: The frst 
model approximating regularization weights by infnite layers of 
message passing, and leveraging higher-order user-user relation-
ships; GTN [4]: This model leverages a robust and adaptive prop-
agation based on the trend of the aggregated messages to avoid 
unreliable user-item interactions. 

A.4.2 CAGCN(*)-variants. For CAGCN, �� = 
Í 
� ∈N1 �� 

−0.5�� 
−0.5 

to 
�

ensure that the total edge weights for messages received by each 
node are the same as LightGCN. Therefore, Eq. (7) becomes:∑ ∑ 

�� � � +1 � e = (( � −0.5� −0.5) Í )e� , ∀� ∈ V . (25)� � � 
� ∈N1 ��� 

� ∈N1 � ∈N1 � 
� � 

For CAGCN*, �� = � as a constant controlling the trade-of between 
contributions from message-passing according to LightGCN and 
according to CAGC. Eq. (7) becomes:∑ 

�� � � +1 � e = (� Í + � −0.5� −0.5)e� , ∀� ∈ V, (26)� � � 
� ∈N1 ��� 

� ∈N1 � 
� 

where we search � in {1, 1.2, 1.5, 1.7, 2.0}. 
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A.5 Additional Experiments 
A.5.1 Adding edges according to local CIRs. Given the user-item 
bipartite graph for training, we calculate the CIR-variants and use 
them to rank the neighborhood for each center node. During con-
struction, we frst remove all edges and then iteratively cycle over 
each node and add its corresponding neighbor based on the ranking 
until hitting the budget. Figure 8(a) contains an example with users 
�1, �2 and a budget of three edges, where �1 and �2 both frst get 
an edge, but then only �1 gets a second edge. 

Figure 8: (a) The procedure of adding edges according to 
CIR of neighbors around each node. (b)-(c) The performance 
change of adding edges on Gowalla and Yelp. 

Similar to what we observed in Figure 3, the performance in-
creases as we add more edges on Gowalla and Yelp (Figure 8(b) and 
(c), respectively). Furthermore, except for cn, adding edges accord-
ing to CIR-variants is more efective in increasing the performance, 
which demonstrates the efectiveness of CIR in measuring the edge 
importance. 

A.5.2 Adding edges according to global CIRs. Here we introduce 
how we add edges globally according to CIRs. Given the user-item 
interactions for training, we frst construct the user-item bipartite 
graph and calculate the diferent variants of CIR including jc, sc, 
cn, lhn as stated in Appendix A.1. Then, we directly rank all edges 
according to the computed CIR. In the construction stage, we frst 
remove all edges in the bipartite graph. Then we select the top 
edges according to the ranking based on our budget. Figure 9(a) 
contains an example with users �1, �2 and a budget of three edges, 
where we directly select the top-3 edges from all users’ neighbors. 

Figure 9: (a) The procedure of adding edges according to CIR 
globally. (b)-(c) The performance change of adding edges on 
Amazon and Yelp. 

In the frst stage, we observe a similar trend that adding edges ac-
cording to CIRs lead to faster performance gain as Figure 8, which 
demonstrate the efectiveness of CIR in measuring the edge im-

portance globally. However, since we don’t cycle over each node 
and add its corresponding edge as we do in Appendix A.5.1, we 
would keep adding so many edges with larger CIR to the same node, 
which may not maximize our performance beneft when the metric 
is calculated by averaging over all nodes. 
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