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Introduction and Background - Graph-Structured Data is Everywhere
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Introduction and Background - Graph-based Tasks and Graph Machine Learning
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Introduction and Background — Real-world Graphs have Data Quality Issues

Topological Issues Imbalance Issues
e.g., Homophily vs Heterophily e.g., labeled data in chemistry
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Introduction and Background — Model- vs. Data-Centric Methods

Find the best model for Realize the best dataset for
the given fixed dataset the given prediction task

Model-Centric ( ’1 Data-Centric

etc. u ote.
Model
architectures ‘ Hyperparameter
tuning Data Organization: Data Cleaning:
Loss functions/ Constructing graphs ¢ Confident
constraints learning

Data Integration:
Improving node/edge
features




Introduction and Background — Model- vs. Data-Centric Methods

WE REALIZED
ALL OUR DATA
1S FLAVED.

\

i

Credit: MIT Introduction to Data-Centric Al course & Inspired by XKCD 2494 “Flawed Data”




Data Quality-Aware Graph Machine Learning
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Topology Issues

* Global Positional Issues
* Local Topology Issues

* Missing Graph Issues

* Future Directions and Q&A




TOpOlOgy Issues — Global Topology Issues — Labeled Node Influence
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Topology Issue — Local Topology Issues — Heterophily/Homophily

Ego-Neighbor Separation

Homophily vs Heterophily rk = COMBINE(rk~1, AGGR({rk~1: u € N,}))
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Topology Issue — Local Topology Issues — Heterophily/Homophily

Homophily vs Heterophily

8868 . .

Birds of a feather

Ego-Neighbor Separation
r¥ = COMBINE(rX—1, AGGR({r*1:u € V,,}))

Higher-order Neighbor
r¥ = COMBINE(r¥~%, AGGR, ({rf1:u € N}},

flock together AGGR,({rf~1:u e M2} ..))
Combination of Intermediate Representation
o ® @4 @ Ego rY = COMBINE(r}, 12, ...,r%)
O N | L
O ..... - O O 1 -Order
o\ g VW) \[t/ @ Class belief propagation
® e @) P 2_ or der k _ 0 k—1
ANV AR It ; . B* =B + AB""H
e N\ &1 IOe T k-1
®—— g . O e Rlylxrgl Graph Transition [0_1A|(])3,1|0.8]
. | | Graph-level Homophily O
. 0.1 03 06
® 90 ® h(G,{yi;i € V}) = |€_| Z L(y; = yk) Io_g 0.1 0_1]
(4,k)EE 0.7 03 O
H
Zhu, Jiong, et al. "Beyond homophily in graph neural networks: Current limitations and effective designs.” NeurlPS 2020 13
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Topology Issue — Local Topology Issues — Heterophily/Homophily

Across Different Graphs Within the Same Graph
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Topology Issue — Local Topology Issues — Training-to-Testing Topology Shift
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Topology Issue — Local Topology Issues — # of Common Neighbor Shift

Link-centric Perspective Node-centric Perspective
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Topology Issue — Missing Topology Issues

Sometimes Real-world
Applications do not
have Graphs!

But Graph can actually
encode some useful
information
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Wang, Yu, et al. "Knowledge graph prompting for multi-document question answering." AAAI, 2024
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Topology Issue — Missing Topology Issues
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Q&A and Future Work — Topology Issue

Global Topology Issue Missing Topology Issue To p olo gy Issue of Complex Graphs
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Imbalance Issues

* Node-level Imbalance
* Graph-level Imbalance

* Edge-level Imbalance

* Future Directions and Q&A




Imbalance Issues — Node-level imbalance

SMOTE GraphSMOTE
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Accuracy (%)

Accuracy (%)

Imbalance Issues — Node-level imbalance
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Imbalance Issues — Graph-level imbalance

Malware Detection

Drug Discovery
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Imbalance Issues — Graph-level imbalance
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Q&A and Future Work — Imbalance Issues

Node-level Imbalance Retrieval Additional Supervision
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Bias and Fairness Issues - Suicide Prevention

o o . Percentage of high schoolers
¢ Why suicide preventlon? reporting a suicide attempt in the past

 Suicide is one of the leading causes of death in United States 12 months, by race/ethnicity

9 Individual AIAN - [ 20.1%
SUI(’ IDE Gatekeeper M:;lél:sle D 12.3%
\ A Warning sign of suicide Black [ 10.0%
PREVENTION _friendship
LIFELINE R ——
1-800-273-TALK (8255)
suicidepreventionlifeline.org Wh|te _ 89%
Hispanic [N 84%
Gatekeeper trainin
p g Toy exarpple of a gatekeeper Asian [ 4%
programs training program
Suicide attempts
by race/ethnicity

 Existing prevention strategies disproportionately affect different groups

* Key question
* How to correct the bias and ensure fairness on graphs?




Bias and Fairness Issues - Fairness Definition

* Principle

» [Lack of favoritism from one side or another

 Rich fairness definitions

* Group fairness
* Statistical parity
* Equal opportunity
* Equalized odds
» Accuracy parity
 Individual fairness
* Counterfactual fairness
* Degree fairness (on graphs)

Fairness definition
Group fairness
Individual fairness
Counterfactual fairness

Degree fairness

Lack of favoritism

v

One side

Two sides
Two demographic groups
Two data points
A data point and its counterfactual version

Two group of nodes with same degree

30



Bias and Fairness Issues

* Group Fairness on Graphs
* Individual Fairness on Graphs

* Degree Fairness on Graphs

* Future Directions and Q&A




Group Fairness: Statistical Parity

* Statistical parity = equal acceptance rate

Pry(¥y =c) =Pr_(y = c)

y: model prediction

Pr, : probability for the protected group

Pr_: probability for the unprotected group

Also known as demographic parity, disparate impact

 Example: clinical trial participation

@l

£
/

-

Approved
0

o Node classification \/

‘ algorithm @ 9

dh &

o =

_® / & o
) v

Feldman, M., et al. Certifying and removing disparate impact. KDD 2015.

Not Approved

.

® 9
ah b

:

Prs (¥ = approved) = 2/3
Prg(j? = approved) = 2/3

Fair result
Same approval rate for
male and female
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Group Fairness: Equal Opportunity

* Equal opportunity = equal true positive rate

y: true label

Pro@=cly=c)=Pr_(J =cly

y: model prediction
Pr, : probability for the protected group
Pr_: probability for the unprotected group

* Example: clinical trial participation  5,,yed Not Approved

A&
A

_g/- 2

Node classification
algorithm

@ °
ah &b

:
()

(

2 8: female

: truth = approved %8 : truth = not approved

Hardt, M., et al. Equality of opportunity in supervised learning. NeurlPS 2016.

— C)
= If hold for all classes, it

is called equalized odds

Prs (9 = approved|m) = 1
Pra(y = approved| 2) = 1

Fair result

Same true positive rate
for male and female

33



Adversarial Learning for Fair Representation Learning

* Statistical parity

* Independence between the learned embedding z and a sensitive attribute a
Z, 1 a,, Vnodeu

where a,, 1s the sensitive value of node u

e Formulation

 Mutual information minimization
I(z,,a,) =0,V nodeu

* Analogous to statistical parity in classification task

* Fail to predict a,, using z,, < no information about a,, in Z;,
* Solution Corresponding to
* Adversarial learning ‘adversarial’

* Encoder: encode node into low-dimensional embedding space for downstream tasks
* Discriminator: fail to predict a,, using z,,

Bose, A., & Hamilton, W. (2019). Compositional fairness constraints for graph embeddings. ICML 2019.
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Limitation #1: Full Access to Sensitive Attribute Information

* Adversarial learning

* Minimize a task-specific loss function to learn ‘good’ representations
* Maximize the error of predicting sensitive feature to learn ‘fair’ representations

* Limitations
* Require the sensitive attribute of all training nodes to train a good discriminator
* Ignore the fact that sensitive information is hard to obtain due to privacy

* Question
* What if we only have limited sensitive attribute information?

Sensitive
Attributes
D
——_ Gender Gande
/ /
) — i é- D
Y — . . Occupation +-cp \ P
= \ \
D
. Age Age
I Graph Node |~ .. .| Filtered
nput Grap Embedding| .. " |[Embedding| Discriminators

Dai, E. et al. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. WSDM 2021.
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FairGNN: Additional Supervision Signal

e Observation

» Adversarial learning is unstable to train € even worse with limited sensitive attribute
 Failure to converge may also cause discrimination

. GCN based sensitive
([ J
Key ldea attribute estimator f;
* Additional prerequisite of independence for additional supervision | __________________
* Independence = zero covariance ! T e .
[ i I I
e Solution 3 f@ — i
o—’. | . | Hidden: ~ |
* Pseudo sensitive attribute from a sensitive attribute estimator : ilnput ver | layers Eo _ |
. X /,' t utpu ayerl. 1
* Not embedding from encoder oo L S Le
. C e e I GNN classifier f; !
 Offer pseudo-label for covariance minimization === -=--=------h---

* Absolute covariance minimizer to minimize absolute covariance between model prediction y and pseudo

sensitive attribute §
Lg = |cov(§,9)| = [E[($ = E[SD(Y — E[yDII
* Absolute covariance to avoid minimizing negative covariance

Dai, E. et al. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. WSDM 2021. 36




FairGNN: Overall Framework

* Overall loss function
L=LC+£E_a£A+ﬁLR

e Intuition

* L: classification loss (e.g., cross entropy) for learning representative node representation

* L: sensitive attribute estimation loss for generating accurate pseudo sensitive attribute information
* L,: adversarial loss for debiasing the learned node representation

* Lp: covariance minimizer to stabilize the adversary training

GCN based sensitive
attribute estimator f;

e JE—
1 / : 1
O . {Hidden| ~ |
I ¥3 E layers | 4 |

: Output layer;

/




BeMap: Fair Topology View Generation

e Motivation

* Empirical evidence
* Message passing could be unfair

* Predict node sensitive attribute using embeddings

—————————————————————————————————————————————————————————————————————

i Classification Task for Job Application Ei Notations E 1eamed from GCN and MLP (no MP)
Input graph Neighborhood aggregation i ' qualified | 15 ) =T
i . . oy L ! : 5%
| [ A i X unqualified | A Toy Graph : — 0.8 7
Message Passing : @ [ ] () @ 2 Demographic groups Majority: ‘9‘ Minority: y
i . . . . i: Unfair Prediction i 8 0.6
; X X o P(V|&) = E : How to calculate Majority Neighbor Ratio? <o4 >
i . . . . i 3 Target Node 2 . 1
- ¢ @ @ ¢ & 1 3 &7 Maorty Neghbor Ratol @) = —_C#Of ) 2
| i i - + t - e
; [ [ P(v|&) == P jority Neighbor Ratio( £) Fof 2)+ (Hof @) 0. MLP
| [ ] a h 3! 3 2 00 o GCN
B eSS e ' = =2 00 02 04 06 08 10
Majority Neighbor Ratio

* Theoretical analysis * Method: BeMap

node embedding = fair embedding + bias residual * (In every training epoch) neighbor sampling for

Space of the Bias Residual b(® Space of the Bias Residual b(+1 balanced nelghborhood and MP on lt
. ‘
I TR Vanilla message | © Hi'e « Up to 80% bias reduction
E . ® o passing .E () ... B ) )
2 . E - 2| o° m * Comparable or even better classification accuracy
E| o £ o
a o = o * More details in the paper

Dimension 1 Dimension 1

@ : bias residual in majority group
@ : centroids of the majority or minority group

p 28T

: bias residual in minority group
: fair centroid in BeMap

Lin, X., Kang, J., Cong, W., & Tong, H. Bemap: Balanced message passing for fair graph neural networks. LoG 2023.
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Bias and Fairness Issues

* Group Fairness on Graphs
* Individual Fairness on Graphs

* Degree Fairness on Graphs

* Future Directions and Q&A




Individual Fairness

* Definition
* Similar individuals should have similar outcomes
* Rooted in Aristotle’s conception of justice as consistency

* Formulation: Lipschitz inequality (most common)
d;(M(), M) < L

* M: a mapping from input to output
* d;: distance metric for output

e [:aconstant scalar
Input Space Output Space

M(-)
/ \ M(x)
: dl(Mm M(y))
] M(y)
MO

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. Fairness through awareness. ITCS 2012.

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.

“Equality consists in
the same treatment of
similar persons, and no

government can stand
which is not founded
upon justice.”

40



InFoRM: Individual Fairness on GRaph Mining

* Research questions
RQ1. Measure: how to quantitatively measure individual bias?
RQ2. Algorithms: how to ensure individual fairness?
RQ3. Cost: what is the cost of individual fairness?




InFoRM Measure: Quantifying Individual Bias

* Principle
* Similar nodes - similar mining results

Similarity between node i and node j (1) FOT any node pair (i, )

« Mathematical formulation Y[, : ] — Y[, : 1I12S[i, j] < e

;. L1112

1YL, : ] =Y, : 1l <

« IfS|i, /]| is high, S[lE—J] is small — push Y[i,: ] and Y[j, : | to be more similar
* Inequality should hold for every pairs of nodes i and j = too restrictive

3 S VL - VI, ST < e
i=1j=1 “ /

2Tr(YTLgY) < &

\ Overall individual bias of the graph

(2) Sum it up for all node pairs

e Relaxed criteria

 m: number of edges in the graph

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020. 42
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. ITCS 2012.



Alternative Measure: Ranking-Based Individual Fairness

PDOOPD o :
- RHS of Lipschitz condition: !

0 (9085|3095 |90 |bothLd(U1 Us4) and Ld( Uz, U4) are 25.|

* Key challenge in InNFORM measure ‘0

* Lipschitz condition (used in InFoORM) Zz? s I e B w? -
d1(M(x),M(y)) < Ld,(x,y) ®)|es[ 1 [o[0|]2]| >

U4
® |30(20|70]| 0 |50 (50

* Distance comparison fails to calibrate between different individuals uzg uzmy Uigy

'953205005
—>Q'

----------------------------

u :

° Definition “ 90| 2|2|50(5]|0 D(uz, us) < Ld(Uz2, Ud) <=

. (a) Outcome distance matrix (b) Lipschitz condition judgement
 (Given from distance metric D based on human knowledge

* (1) the node similarity matrix S; of the input graph G
* (2) the similarity matrix S¢ of the GNN output Y
* Y is individually fair if, for each node i, it satisfies that
ranking list derived by S¢[i, :] = ranking list derived by Sg¢/[i, :]

Consistent
< >
[ J [ J
[ J [ J
[ ] [ J
‘ Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020. 43

Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.



InFoRM Measure: Mitigating Individual Bias

* Graph mining workflow

input graph A mining model w/ parameter 6 mining results Y

O & Approved Not Approved
/ D
graph mining
algorithm & &

i-a/

* Debiasing methods
* Debiasing the input graph: m‘}n ] = ||K — A||12: + aTr(YTLgY)

topology consistency \ Individual bias

s. L. aYl(K' Y, 9) =0 (InFORM measure)
* Debiasing the mining model: m‘;n J=1(AY,0)+ aTr(YTLgY) /

task-specific loss function

« Debiasing the mining results: m‘}n J =Y =Y||% + aTr(YTLgY)

mining results consistency




InFoRM Cost: Characterizing Individual Bias

* Main focus
* Debiasing the mining results (model-agnostic)

* Given
* A graph with n nodes and adjacency matrix A
* A node-node similarity matrix S

e Vanilla mining results Y
e Debiased mining results Y* = (I + aS)~1Y

o If [|S — All|p = A, we have
IV = ¥l < 20y (1 + IR

* Key factors

* The number of nodes n (i.e., size of the input graph)

—> could be small due to (approximate) low-rank structures in real-world graphs
—> could be small if A is normalized

Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020.
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Bias and Fairness Issues

* Group Fairness on Graphs
* Individual Fairness on Graphs

* Degree Fairness on Graphs

* Future Directions and Q&A




Degree Fairness: Definition and Motivation

* Definition
* Nodes of different degrees should have balanced utility on a graph mining task

 Example: online advertising
* (A small portion of) celebrities often enjoy high-quality model performance
* (A large portion of) grassroot users often suffer from bad model performance

0

18 10
N1i6{ o o 3]
Sl
?01.2 -1 *
c o 10 o
g 10 o °
Qo ol
< 0.8 = "
- o
0.6 S 107 >
5 -
310 8 ®
go.g— o 107 ‘
() 0.7 4 ® kC #]
o 064 IDOET ©
g 10" Sean e
%% o ¢ 0 1 2 3
041 — . . : : : 10 10 10 10
0 10 20 30 40 50
Degree degree

Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022.
Subramonian, A., Kang, J., & Sun, Y. Theoretical and empirical insights into the origins of degree bias in graph neural networks. arXiv 2024.
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Degree Unfairness: Pitfall of Graph Neural Networks

e Given

* (DG =AX)
* (2) Any test node i in G with label ¢
* (3) A graph learning model M which output (before softmax) Z

* (4) Any wrong prediction ¢’ # ¢
* Our results
* Misclassification rate )
Pr(Pr(y = cli,M) > Pr(y = c'|M,i)) < ——5—
((Pr(9 = cli M) > Pr(9 = ¢IM,0) < 1
(IE[Z[L',C’]—Z[i,c]D2
Var|Z[i,c']-Z[i,c]]
* R; . 1s positively correlated with the degree of node i

where R; .+ = (reciprocal of measure of dispersion from economics)

* Conclusion
* high-degree nodes often have !

Subramonian, A., Kang, J., & Sun, Y. Theoretical and empirical insights into the origins of degree bias in graph neural networks. arXiv 2024. 48




Causes #1: High-Degree Nodes with High Influence in Node Embeddings

* Given
* Nabeled: @ set of labeled nodes Vzpeled
W) the weight of L-th layer in an L-layer GCN
d;: degree of node i
X;: input node feature of node i

hl@: output embeddings of node i learned by the L-layer GCN

* Influence of node i on GCN training

S(i) = z |E[on{” /0%, ||| o< Y@ W) 2 Ja

k€V)abeled k€V)abeled
* Remark
* For two nodes i and j, if d; > d;, then S(i) > S(j)
— Node with higher degree will have higher influence on GCN training

Tang, X., et. al. Investigating and mitigating degree-related biases in graph convolutional Networks. CIKM 2020
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Solution #1: Degree-Specific Graph Convolution

* Key idea

* Degree-specific weights to encode degree information

* Given
* d;: the degree of node i
. Wc(l?: the degree-specific weight w.r.t. degree of node j

* Degree-specific graph convolution
l
h(t+D = a< Y ay (WO +w) h;w)
JEN;U{i}

« DEMO-Net 2 Wa(li,) is generated randomly

RNN
« SL-DSGCN - WCE? 1s generated using a recurrent neural network W {Wl — W =W — W4>

Node Features

Tang, X., et. al. Investigating and mitigating degree-related biases in graph convolutional Networks. CIKM 2020
Wu, J., He, J., & Xu, J. Net: Degree-specific graph neural networks for node and graph classification. KDD 2019.
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Causes #2: High-Degree Nodes with High Influence in Gradient

. . Row sum in A Column sumin A
* Gradient of loss w.r.t. weight n | N l
a] (col) (row)
PO = 2 da()I; 7 = 2 d,f\(])ﬂj
i=1 j=1

- =_1 ~_1 . o
« A=D 2(A+1)D 2 2 symmetric normalization kernel Node a: dz(a) = 2

H(CO]) (row) ) . . Node b: dz(b) =1
 I; and I i - the directions for gradient descent (col) (oD

dz(i) and dz(j) = the importance of the direction

I, b Biased direction —
Fair direction V Favor node a by ol
i ) ) being closer to 1"
High degree = more focus on that direction

HEICOI) €l
° Symmetl’ic nOl'malizatiOIl Node degree takes no effect Node degree is considereda
* Normalize the largest eigenvalue but not degree 1 P I e

e 4

* High degree in A — high degree in A

-

Degreein A
o "
Degree in A

—
w
1

o
| a¥ye
o
o
T T T ¥ - T ™ T T T
S0 100 150 200 250 100 a 50 100

0 25 50 75
Degreein A Degreein A Degreein A

Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022
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Solution #2: Graph Normalization

* Key idea
» Mitigate impacts of node degree by normalizing it to constant (i.e., 1)
* Normalize the graph to a doubly stochastic graph

* Sinkhorn-Knopp (SK) algorithm

* [teratively normalize row and columns
* (Our result) SK always finds the unique doubly stochastic form of symmetric normalization kernel

* Fair gradient computation
( ) - (H-D)'A
fair

oW DS HE®

 Apg > doubly-stochastic normalization of A

* RawlsGCN family

 RawlsGCN-Graph: during data pre-processing, compute Apg and treat it as the input of GCN

» RawlsGCN-Grad: during optimization (in-processing), treat Apg as a normalizer to equalize the importance
of node influence

Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022.
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Bias and Fairness Issues

* Group Fairness on Graphs

* Individual Fairness on Graphs

* Degree Fairness on Graphs

* Future Directions and Q&A




Future Direction #1: Fairness beyond Plain and Static Graphs

* Observation
* Real-world graphs are often dynamic and/or multi-sourced

* Research questions
* How to ensure fairness for multiple type of nodes/edges or multi-graphs?
* How to efficiently update the fair mining results at each timestamp?
* How to characterize the impact of graph dynamics and multiple sources over the bias measure?

Multi-sourced Dynamic graphs
: over 3 timestamps
social networks =0 et t=2
wi £lin : . :

‘ T ‘ -\& New edge
2. .a <R

:\'gé/New edge 8”
New node™=~

.. - '
o
P

o

s
O




Preliminary Work: Dynamic Group Fairness in Recommender Systems

* Observation
» performance disparity is getting larger over

time —H— New Data NOT Used

—b— New Data Used w/o Fairness
—6— New Data Used w/ Fairness (FADE)
(b) Performance disparity

(a) Overall performance

6
Q 0.45 2
@4 54 fan)
730-0 S 2 - @
g 0.35 ee,.,‘-‘
0.30
01234567289 0123456789

Time period Time period

e Method: FADE

Model-agnostic
Fine-tuning with newly observed data

Periodically re-training to keep historical
information

Linear complexity w.r.t. # new data

T=
IMELIORAJy |

p 28

Yoo, H., Zeng, Z., Kang, J., Liu, Z., Zhou, D., Wang, F,, ...

* Theory

* Fine-tuning is better than re-training for
fairness over time

Re-training

- (1) L‘{test = real loss of re-training at test time; (2) L;test = optimal loss at time test; (3) m, = #. edges at time 0;
(4) m; = #. edge changes attime t; (5)0 <y <1

Lrest—1
Modot,,., + 2y Madig,,,,

4 ! I z
e
Mg + (trest — 1My &5

Lrt

*
Lrest = Lttest +2

mo + (trest — 1)M4

Fine-tuning
- Similar settings as re-training(ut Lftttest = real loss of fine-tuning at test time

P72 I To—2
(1—}/) 2 FCGL1yr(mltldﬁfu~>t+4\[<y test +1 Y “Ptest )logé)

my 1 -y*)my

ft *
Lt(est = Lttest +2 = yttest

 Results

- Fairness over time, small accuracy decrease
|-®— FADE (Ours) | [. FADE (Ours)]

NDCG@20 / MF 1072 1072
_10“2 20 & 0] r]
3.0 8 2.0
~ 2.0 Q , ¢ ®
& 10 & 1.0 > 1.0
[ 2] A
0.0 0.5| A p n

1 2 3 4 5 6

Time period

0.0
0.75 0.80 0.85  0.280.300.320.34
NDCG@20 F1@20

& Tong, H. Ensuring user-side fairness in dynamic recommender systems. WWW 2024
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Future Direction #2: Fairness on Graphs - Fairness with Graphs

* Fairness on graphs
* Graph as data
* Nodes = entities
* Social networks =2 nodes = users

« Citation networks = nodes = papers
* Web graph = nodes = webpages

* Fairness with graphs

e Graph as context
 Nodes = models/datasets/modalities

* Example: supply chain

1. Demand + supply for medical resources

2. Models to allocate medical resources

* How can we leverage demand + supply + model collectively for fair supply chain?




Future Direction #3: Benchmark and Evaluation Metrics

* Observation
* No consensus on the experimental settings for fair graph learning
* Which data to compare? What sensitive attribute to consider?
* Which evaluation metrics for each type of fairness?

* Consequences

* Different settings for different research works
* Hardly fair comparison among fair graph learning methods
« Hardly deployable methods in real-world scenarios

* Call for community effort
* Evaluation benchmark for consistent experimental settings and fair comparison
* Collection of large-scale, realistic, but challenging dataset for evaluation
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Limited Labeled Data Issues

* Graph Data Augmentations

* Self-supervised Learning on Graphs




Data Augmentation

Wikipedia: Techniques used to increase the amount of data by

adding slightly modified copies of already existing data or newly
created synthetic data from existing data.

*  Why data augmentation?

* It helps reduce overfitting when training a machine learning
model.

* The acquisition of labeled graph data can be expensive.

60



Data Augmentation

Wikipedia: Techniques used to increase the amount of data by

adding slightly modified copies of already existing data or newly
created synthetic data from existing data.

Overfitting
100,000
images

9
—»( Representations >—> “Dogs”

Extra data i
points ?

——— -




Data Augmentation

Wikipedia: Techniques used to increase the amount of data by

adding slightly modified copies of already existing data or newly
created synthetic data from existing data.

It is awesome —RUEICNEE— |t is amazing

amazing
awe-inspiring  synonyms
awing

Image sources:
https://www.kdnuggets.com/2018/05/data-augmentation-deep-learning-limited-data.html
https://amitness.com/2020/05/data-augmentation-for-nlp/




Graph Data Augmentation

* Structure Augmentation
* Drop/add nodes/edges, etc.

* Feature Augmentation
 Mask off features, etc.

* Label Augmentation
* Label propagation, etc.




Graph Data Augmentation

* Rule-based augmentations
* Designed based on heuristic rules
* Usually efficient and scalable
* Simple and easy to implement
* Commonly used in self-supervised learning

* Learned augmentations

* Involve learning during augmentation
* Augmented data better fits GML models
* Better performances in supervised learning




Rule-based Graph Data Augmentation Approaches

2 Task Level Augmented Data
Methodalozy: Representative Work Node Graph Edge | Structure Feature Label
DropEdge [87] v v
DropNode [27] v v
NodeDropping [127] v v
Stochastic Dropping/Masking Feature Masking [100] v v
Feature Shuffling [106] v v
DropMessage [23] v v v
Subgraph Masking [127] v v v
GraphCrop [111] v v
Subgraph Cropping/Substituting | M-Evolve [145] v v
MoCL [97] v v v
Graphormer [125] v v
VirmalNude GNN-CM*/CM [45] v v
Rule-based GDA
Graph Mixup [115] v v v
Mixu ifMixup [37] e v v Ve
P Graph Transparent [85] v v v v
G-Mixup [39] v v v
GraphSMOTE [140] v v
SMOTE GATSMOTE [75] v v
GNN-CL [70] v v v
| Diffusion | GDA [60] | v | v
| Counterfactual Augmentation | CFLP [141] | o v v
; : LA-GNN [74] v v
’ Attribute Augmentation ‘ SR+DR [93] ‘ v ’ v
g ! Label Propagation [147] v v
’ Pseudo-labeling ’ PTA [21] % v

: g.llO



DropEdge

 Dropout on edges: randomly remove some edges at the beginning
of every training epoch.

~

A=MGOCA

M € {0,1}V N st. M; ; = Bernoulli(e)

* Prevents overfitting and over-smoothing.




Other Stochastic Masking/Dropping Methods

* Node Dropping
 Randomly removing part of the nodes.

* Feature Masking
 Randomly mask off node features.
 Random row-shuffling on node feature matrix X.

e Subgraph Masking
 Randomly mask off a connected subgraph.

Feng, et al. Graph Random Neural Networks for Semi-supervised Learning on Graphs. NeurlPS 2020.

You, et al. Graph Contrastive Learning with Augmentations. NeurlPS 2020.
Thakoor, et al. Large-scale Representation Learning on Graphs via Bootstrapping. ICLR 2022.

Velickovic, et al. Deep Graph Infomax. ICLR 2019.
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Mixup

 Mixup: generates a weighted
combination of random pairs

from the training data. i
Tr = )\ZBZ T (1 — )\)LE‘j, | ambca=05 |
y=2Ay, + (1 - ANy, ﬂ

 Manifold Mixup: interpolating
hidden states.

Zhang, et al. Mixup: Beyond Empirical Risk Minimization. ICLR 2018.

Verma, et al. Manifold Mixup: Better Representations by Interpolating Hidden States. ICML 2019.

Image source: https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixup-
augmentation-with-codes-33288db92de5
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Learned Graph Data Augmentation Approaches

Learned GDA

Graph Structure Learning

GAug [140]
GLCN [47]
LDS [28]
ProGNN [50]
Eland [141]

Graph Adversarial Training

RobustTraining [125]
AdvT [18]

FLAG [63]
GraphVAT [25]

NSNS TSSNANANNS

AN

NSNS SSNANANNS

Graph Rationalization

GREA [71]
AdvCA [97]

A NN

Automated Augmentation

AutoGDA [144]
GraphAug [79]
JOAO [130]
MolCLE [116]

SNSNS

SSNSNSS

SSNASN TSN ISSN

Zhao, et al. Graph Data Augmentation for Graph Machine Learning: A Survey. 2022.
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Limitations of Rule-based Approaches

Do not leverage task information and could hurt the
downstream performance

(a) Original graph. (b) Random mod.
F1 Score: 92.4 F1 Score: 91.0




Learned Graph Data Augmentation Approaches

Graph Structure Learning
 Augment data with good graph structures

* Adversarial Training
 Augment data with adversarial examples

* Rationalization
* Augment data by changing graph environment

 Automated Augmentation
* Automatically combine different augmentations

72



Graph Structure Learning

Graph Learning + Graph Convolution

Graph learning Graph convolution

Semi-supervised
classification loss

LSemi-GCN

Graph learning
lnpu( la}'cr laver

Graph learning
loss LGL




GAug: Neural Edge Predictor

What are better graph structures?
* “Noisy” edges should be removed P —

Inter-class edges

I
I
 “Missing” edges should be added / B |
A |

i N\
Intra-class edges ot :
s SIS ... SO /

M = o (Z27), where Z = [l (A, fG5, (A, X))

M models node similarities




GAug: Interpolation and Sampling

Interpolation and
Sampling

Graph Neural Network
Node Classifier

Neural Edge Predictor :

____;;;_____
®
.
@
e

P'ij = CMM?;J' + (]. — a)A,-j
l Bernoulli sampling
Al




Graph Self-supervised Learning

* Graph Self-Supervised Learning aims to learn generalizable
node/edge/graph representations without using any human-
annotated labels

* Graph Generative Modeling

> Learn generalizable representations by reconstructing the node features
or/and graph structure

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020
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Graph Self-supervised Learning

* Graph Self-Supervised Learning aims to learn generalizable
node/edge/graph representations without using any human-
annotated labels

* Graph Generative Modeling

> Learn generalizable representations by reconstructing the node features
or/and graph structure

» Graph Contrastive Learning (GCL)
» Create different views from the
unlabeled input graph via
data augmentation

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020

77



Graph Self-supervised Learning

* Graph Self-Supervised Learning aims to learn generalizable
node/edge/graph representations without using any human-
annotated labels

* Graph Generative Modeling

> Learn generalizable representations by reconstructing the node features
or/and graph structure

» Graph Contrastive Learning (GCL)

» Create different views from the

q
Graph
Encoder -
f

.Y Contrastive
Similarity— Loss

unlabeled input graph via
data augmentation

»Maximize the agreement between ,
representations of different augmented
views of the same instance \

Graph
Encoder

ko, k1, k2

Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020
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Typical Unsupervised Graph Contrastive Learning

 Graph Data Augmentation
» Create different views of each instance (e.g., node, subgraph)
> Arbitrary graph data augmentation (e.g., edge dropping, feature masking)
« Encoding Backbone
»Encode different augmented views
»Shallow GNNs (e.g., 2-layer GCN)
 Contrastive Loss
»Maximize the agreement between
representations learned from different

Graph Data Augmentation

!

Encoding Backbone

!

Contrastive Loss

Graph Contrastive Learning

augmented views
»Instance-level contrastive learning

Input Graph
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Abnormal Graph Data Issues

* Missing Data

e Adversarial Attacked Data




Missing Data

There are various solutions to deal with missing labels:
* Label propagation (LP)

e Self-supervised learning O
* Unsupervised learning LX) —
, () o LP
What if we have missing features?
* Feature propagation
OTE] HI13 O] 0118
Feature
Propagation GNN o
I:l Unknown Feature
(L1111 [(ITTT]

. Known Feature

-] -] D Reconstructed Feature




Missing Data

What if we have missing features? Algorithm 1 Feature Propagation

* Feature propagation 1: Input: feature vector x, diffusion matrix A
2: Yy X
3: while x has not converged do
4: x  Ax > Propagate features
5 Xk < Vi > Reset known features
6: end while

O] EIT1E O] EI1TE
Feature
Propagatlon

—»  Prediction

I:l Unknown Feature

D]]:D Dj]jj . Known Feature
_] -] D Reconstructed Feature




Missing Data

Comparison of Feature Propagation to Label Propagation

Feature Propagation:
e Propagates features (continuous)
e Prediction is made by a GNN on top of the
propagated features
e Uses features, and a low % of them being
present is enough for good performance

Experiment Results

Across different levels of missing features,
Feature Propagation achieves the best performance

=

Label Propagation:
e Propagates class labels (discrete)
e Prediction is obtained directly from
propagating class labels

e Feature-agnostic
Cora

ey . Typ——

0.8-'&
>y 0.7 \
@)
©
5 ~#- GCNMF
O 0.6- PaGNN
< —— Label Propagation
th 0.5- —%— Random
@ —4— Zero

- 4~ Global Mean
—4— Neighbors Mean ;
FP (Ours) ®

0.4

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features




Missing Data

Beyond missing features on graphs, can we solve the general missing data problem?

Data Matrix
with Missing Values Labels
01 0.3 0.5 NA 0.1 n
) NA NA 0.6 0.2 Yo
O3 | 03 | NA | NA | 05 ?

Issues:

Two ways of approaching missing data problems:

=

Feature imputation: missing feature values
are estimated based on observed values

Label prediction: downstream labels are
learned directly from incomplete data

* Existing methods fail to make full use of feature values from other observations

* Existing methods tend to make biased assumptions about the missing values by
initializing them with special default values

— .
il  « » °
MELIORA
(D)

You, Jiaxuan, et al. "Handling missing data with graph representation learning." NeurlPS 2020 85



Missing Data

GRAPE: reformulate the tasks as graph tasks

Feature Imputation as

Data Matrix Labels Edge-level Prediction

with Missing Values

[ Node Embeddings
[l Edge Embeddings

F F, F3 Fy )

O 0.3 05 NA 0.1 n <«—> Message Passing
O o NA NA 0.6 0.2 Yo @ Missing Feature Values
@ Downstream Labels
O3 | 03 | NA | NA | 05 ?
L Label Prediction as
W Biparite Graph Node-level Prediction
)] (o~@ &
0.5 —
F,
) @ Y. 0.1 on |
0.6 F;
0.2 D
UC “e)——Ip,
Observations Features

Ello




Missing Data

GRAPE yields 20% lower mean absolute error for feature imputation,
and 10% lower MAE for label prediction

o
o

L

<15

Iz . Mean

kS | = ¢ Feature

5101 || "EsWicET imputation:

z . SVD 20% lower
Zos T et MAE than best
= e GrAPE; baseline (KNN)
8

concrete energy housing kinBhm naval power protein wine  yacht

Dataset
L
<§( B Mean
s mm kNN Label
() : H T
= 0.75, (=== MICE & prediction:
5 C Yo 10% |
50,50 . Spectral % lower
B GAIN MAE than best
2025, [ .Tree.... baseline (MICE)
o !B GRAPE:
S0 — L L ___W.__®W_ L. _ _W.___®w_ . M o

yacht

concrete energy housing kin8nm naval power protein wine
Dataset




Adversarial Attacked Data

Observation: Small perturbations of the graph structure and node features lead to
misclassification of the target

¢ Classification

“mistakes

)

Attack on GCN
[] [] < target node _!_ ”
3 @ -
perturbation = )
M ~8 G - had
[] attacker node Qo % X
B ; §|==-——--- ST -°F
i Train node classification model © -;—
:§ T o]
©
@)

% 2
Target gets
misclassified

Ours Gradient Random  Clean




Adversarial Attacked Data

Can we leverage small data perturbations to improve performance?
Yes, adversarial training

Adversarial training is the process of crafting adversarial data points, and then injecting them into
training data

in E L 5
win Bgy)np | HAX (fo(x +9),y)

|

Find the optimal perturbation sample to achieve maximum loss

Find the optimal model parameters to resist the attack of perturbation sample D- distribution

|.]1e: L,-norm distance metric
€: perturbation budget

Kong, Kezhi, et al. "Robust optimization as data augmentation for large-scale graphs." CVPR 2022 89



Adversarial Attacked Data

Can we leverage small data perturbations to improve performance?

Yes, adversarial training

Node Classification

ogbn-products

ogbn-proteins

ogbn-arxiv

Backbone Test Acc Test ROC-AUC Test Acc

GCN - 72.51+0.35 71.74-+0.29
+FLAG E 71.71-+0.50 72.04+0.20
GraphSAGE 78.70-£0.36 77.68 +0.20 71.494+0.27
+FLAG 79.36-£0.57 76.57-+0.75 72.19-+0.21
GAT 79.45+0.59 - 73.65+0.11
+FLAG 81.76+0.45 - 73.71+0.13
DeeperGCN 80.98-0.20 85.80-+£0.17 71.92+0.16
+FLAG 81.93+0.31 85.96+0.27 72.14+0.19




Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training

A use case: training an MLP on graphs
Reason: to avoid the computation-intensive message passing mechanism

# Nodes Fetched Inference Time (ms)
[ GNN J 8e6 7655570  4.0e4
7e6- 3.5e41 33006.4
6e6 ] 3.0e4
5e6/ GraphSAGE 2.5e4] GraphSAGE
4e6 2.0e4]
3e6] 1.5e4]
2e6] 1.0e4
1le6 MLP 0.5e4; 3
[ MLP J 0ebL 20 00esTiggs 1.3 1.84 2.34
4 1 27 37 4~
# Layers
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training

A use case: training an MLP on graphs
GNN Teacher

The problem of training an MLP on graphs:
sensitive to features

l

Graph A 0.2 0.3 0.5
Representational 0.1 0.7 0.2

Similarity Distillation 06 0.1 03

Iﬁl {j" 0.3 04 0.3

\ Soft Label
Node Content Distillation

Features / '

Node Position MLP
Features Student

Tian, Yijun, et al. "Learning MLPs on graphs: A unified view of effectiveness, robustness, and efficiency." ICLR 2023
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training

A use case: training an MLP on graphs
GNN Teacher

The problem of training an MLP on graphs:
sensitive to features

l

Graph A 0.2 0.3 0.5
Representational 0.1 0.7 0.2
Similarity Distillation | 0.6 0.1 0.3 v 5 |
. : 03 0.4 03
ﬁ I A I S g
\ 7N Soft Label - =1
Node Content . Distillation MLP |-l 7S
Features / ' e o| F g
T ! URst
“  Adversarial Feature ) _ .
Node Position Augmentation MLP Learn Adversarial Perturbation

Features

Student

Tian, Yijun, et al. "Learning MLPs on graphs: A unified view of effectiveness, robustness, and efficiency." ICLR 2023

Overcome this problem with adversarial training
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Adversarial Attacked Data

Can we leverage small data perturbations to improve robustness?
Yes, adversarial training

A use case: training an MLP on graphs

GNN Teacher NOSMOG is as robust as GNNs

801 —————— —e—MLP —e—GNN
l - | ‘ —4—GLNN —=—NOSMOG

Graph : 0.2 0.3 0.5 > 60 1
Representational 0.1 0.7 0.2 ©
Similarity Distillation | 0.6 0.1 0.3 2 20
. : 0.3 0.4 0.3 O
- JE N [ R L 10
Soft Label 3
Node Content\ X Distillation 301
Features / % I 201 \ ‘ ‘
“ Adversarial Feature 0 02 04 06 038 1
Node Position Augmentation MLP Noise Level a

Features Student
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Summary

| Data Quality Issues in Graph Machine Learning |

e
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of Common Neighbors [ Automated Augmentation |
~ Missing Topology Issues | || Self-training with confi- L[ Cost |
dence selection Graph Self-supervised
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Future Directions

Topology Issue Existing Data Processing is very time-

consuming and labor extensive!

Imbalance Data Issue

Limited Labeled Data Issue

Abnormal Graph Data Issue

[ ]
[ ]
[ ]
[ ]

: E ll



Summary

Intelligent Data Processing Tool

)
Data

—

Data Processing Tool Better
N Data

Task
Search
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