# Data Quality-Aware Graph Machine Learning



Yu Wang<sup>1,6</sup>

Yijun Tian<sup>2</sup>



Tong Zhao<sup>3</sup>

Xiaorui Liu<sup>4</sup>



Jian Kang<sup>5</sup>



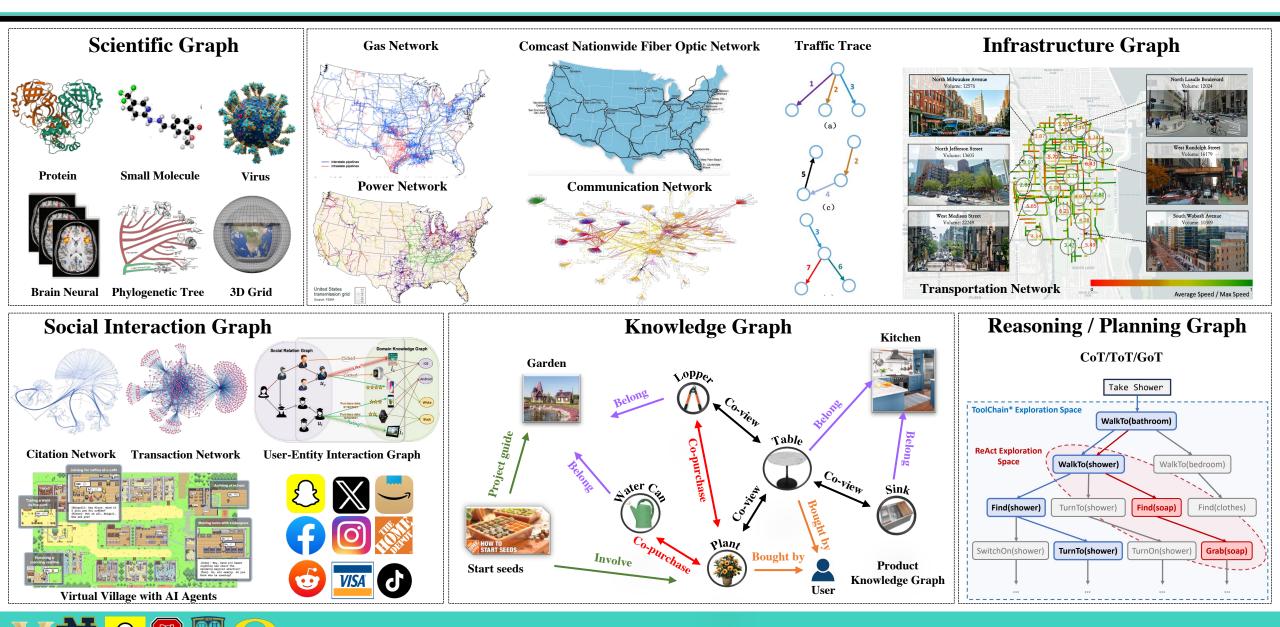
Tyler Derr<sup>1</sup>

Vanderbilt University<sup>1</sup> University of Notre Dame<sup>2</sup> Snap Research<sup>3</sup> North Carolina State University<sup>4</sup> University of Rochester<sup>5</sup> University of Oregon<sup>6</sup>

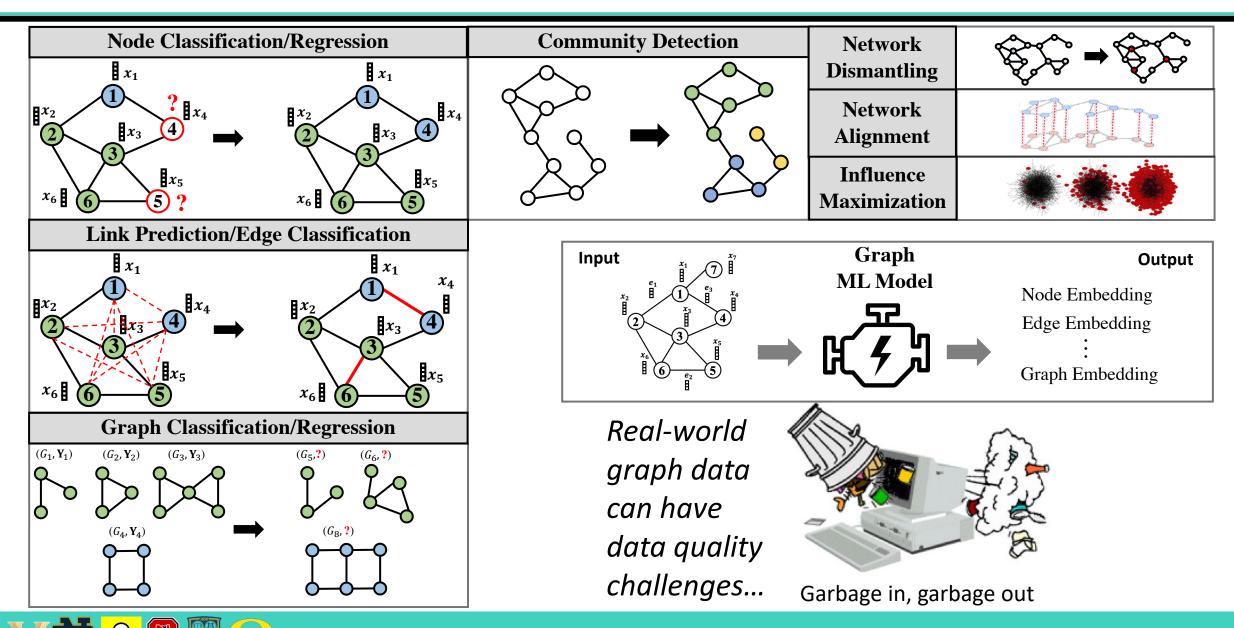




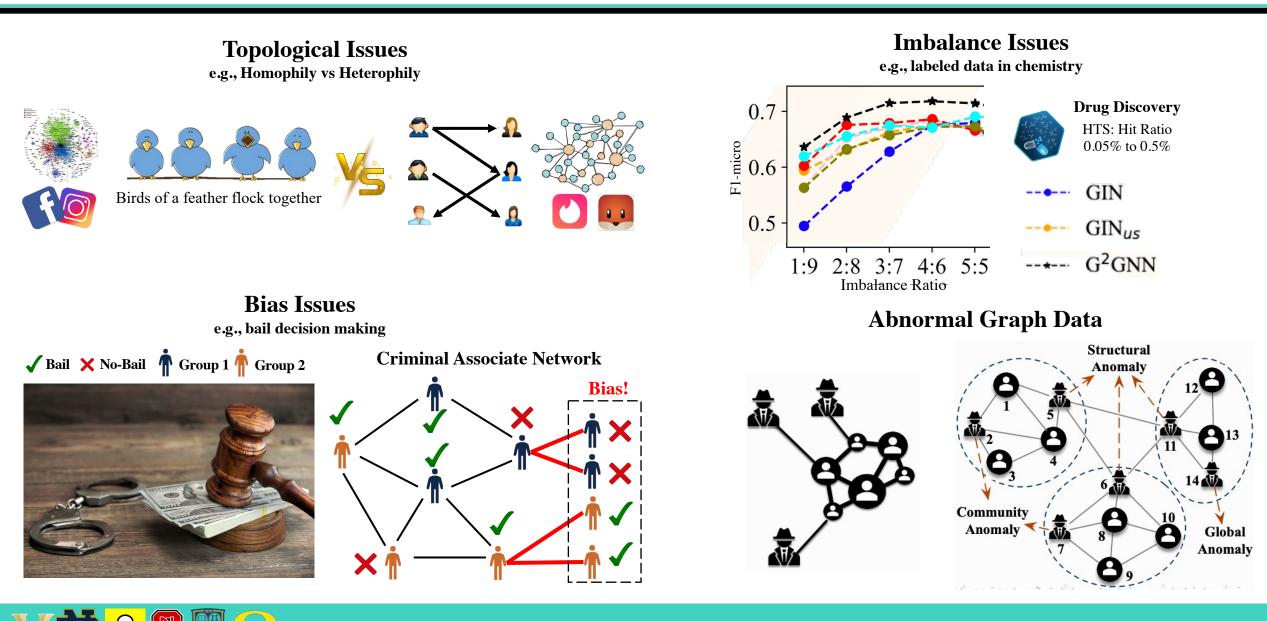
### Introduction and Background - Graph-Structured Data is Everywhere



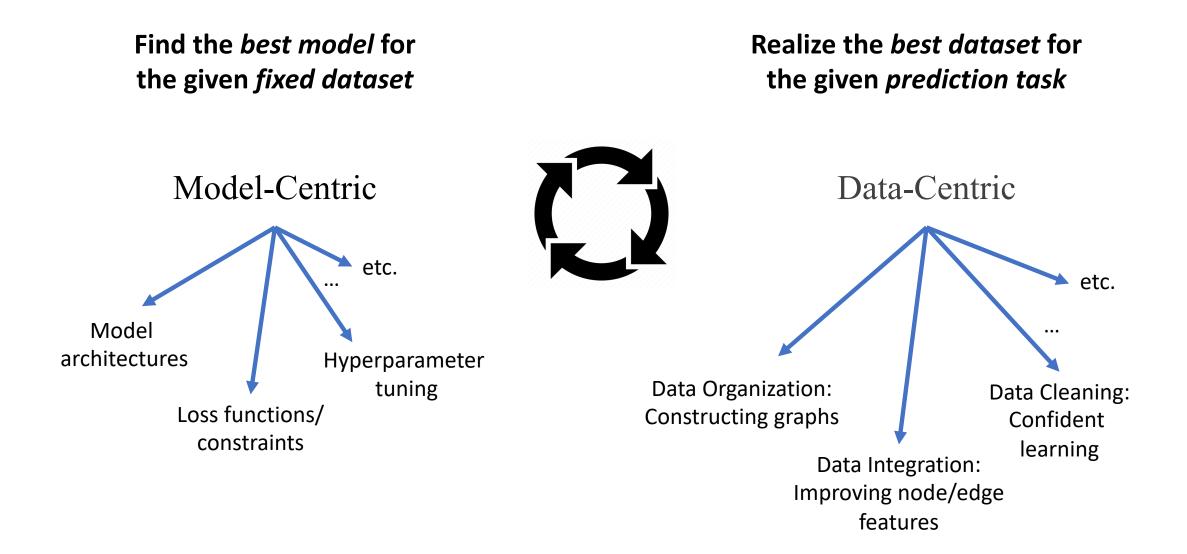
### **Introduction and Background -** Graph-based Tasks and Graph Machine Learning



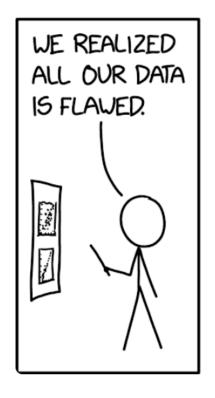
### **Introduction and Background – Real-world Graphs have Data Quality Issues**



### **Introduction and Background – Model- vs. Data-Centric Methods**







Credit: MIT Introduction to Data-Centric AI course & Inspired by XKCD 2494 "Flawed Data"



- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

- Bias and Fairness Issues
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

- Bias and Fairness Issues
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

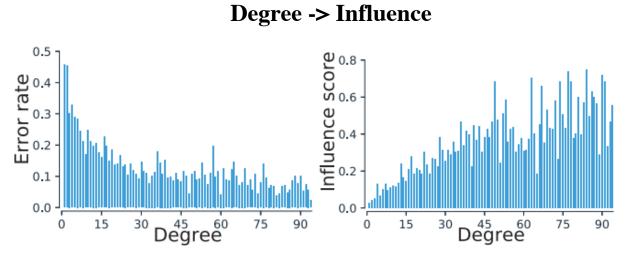
- Bias and Fairness Issues
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



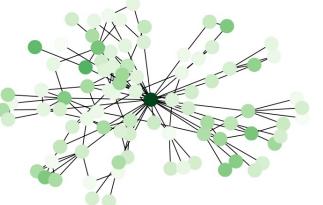
- Global Positional Issues
- Local Topology Issues
- Missing Graph Issues
- Future Directions and Q&A



### **Topology Issues – Global Topology Issues –** Labeled Node Influence

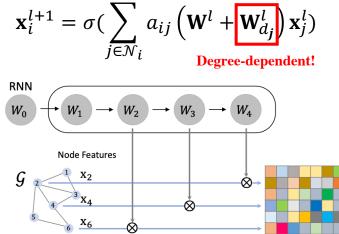


If  $d_i > d_j$ ,  $v_i$  has higher influence than  $v_j$  on training GNNs

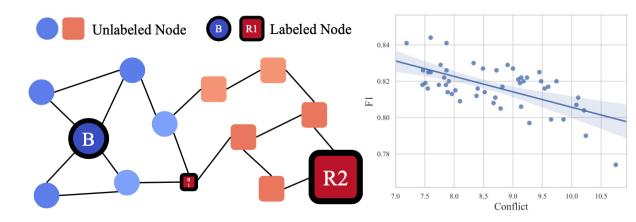


**Darker colors - Higher influences.** 

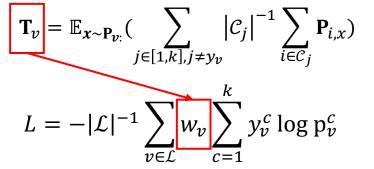








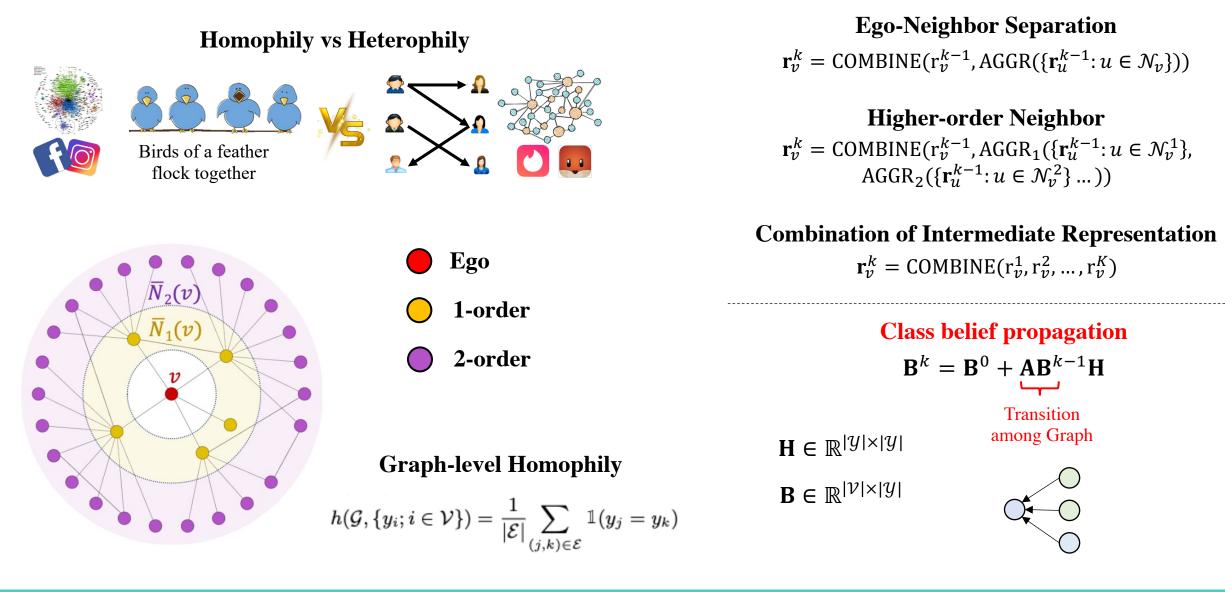
 $\mathbf{P} = \alpha (\mathbf{I} - (1 - \alpha)\mathbf{A}')^{-1}$ 



High T Hight Conflicts, low weight

Tang, Xianfeng, et al. "Investigating and mitigating degree-related biases in graph convoltuional networks." CIKM 2020 Chen, Deli, et al. "Topology-imbalance learning for semi-supervised node classification." NeurIPS 2021

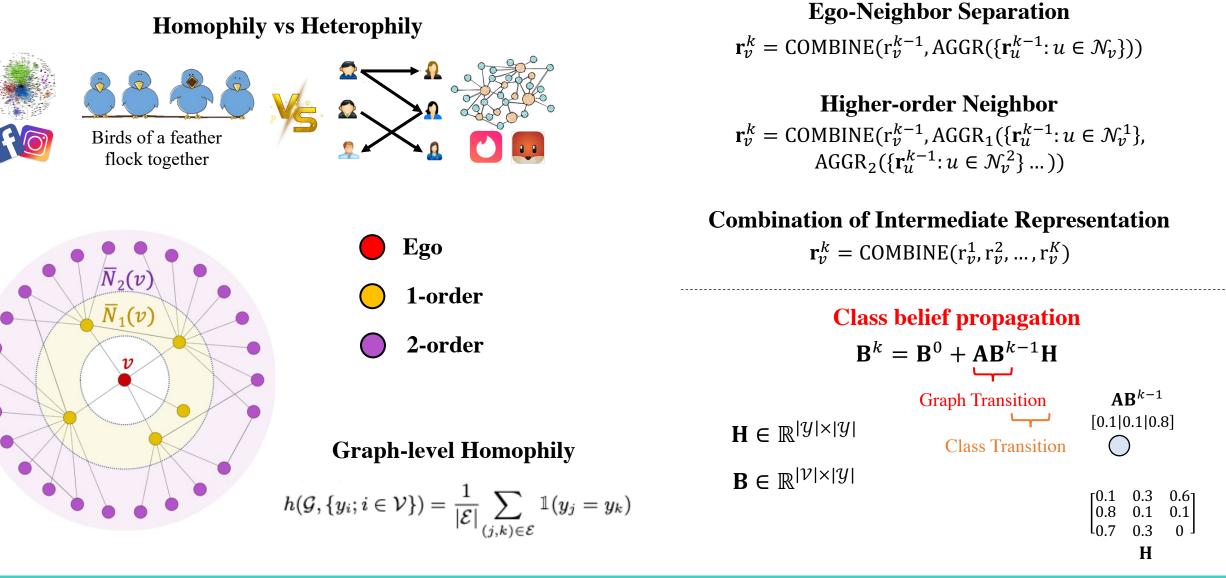
### **Topology Issue – Local Topology Issues – Heterophily/Homophily**





Zhu, Jiong, et al. "Beyond homophily in graph neural networks: Current limitations and effective designs." NeurIPS 2020 Zhu, Jiong, et al. "Graph Neural Networks with Heterophily." AAAI 2021

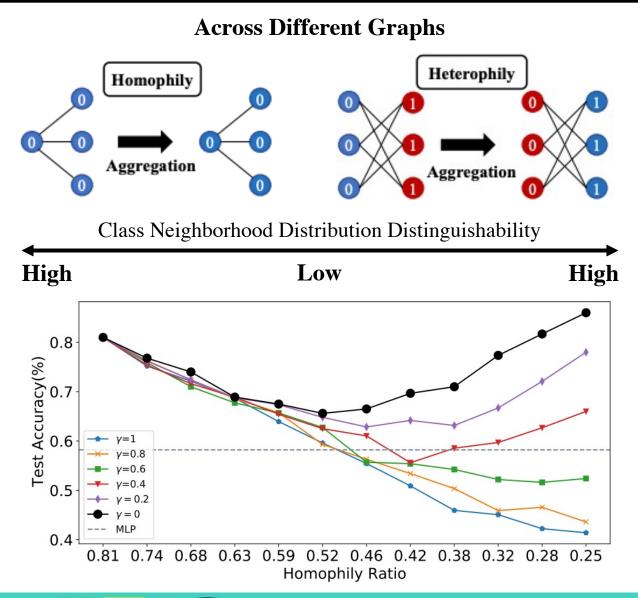
### **Topology Issue – Local Topology Issues – Heterophily/Homophily**





Zhu, Jiong, et al. "Beyond homophily in graph neural networks: Current limitations and effective designs." NeurIPS 2020 Zhu, Jiong, et al. "Graph Neural Networks with Heterophily." AAAI 2021

### **Topology Issue – Local Topology Issues – Heterophily/Homophily**



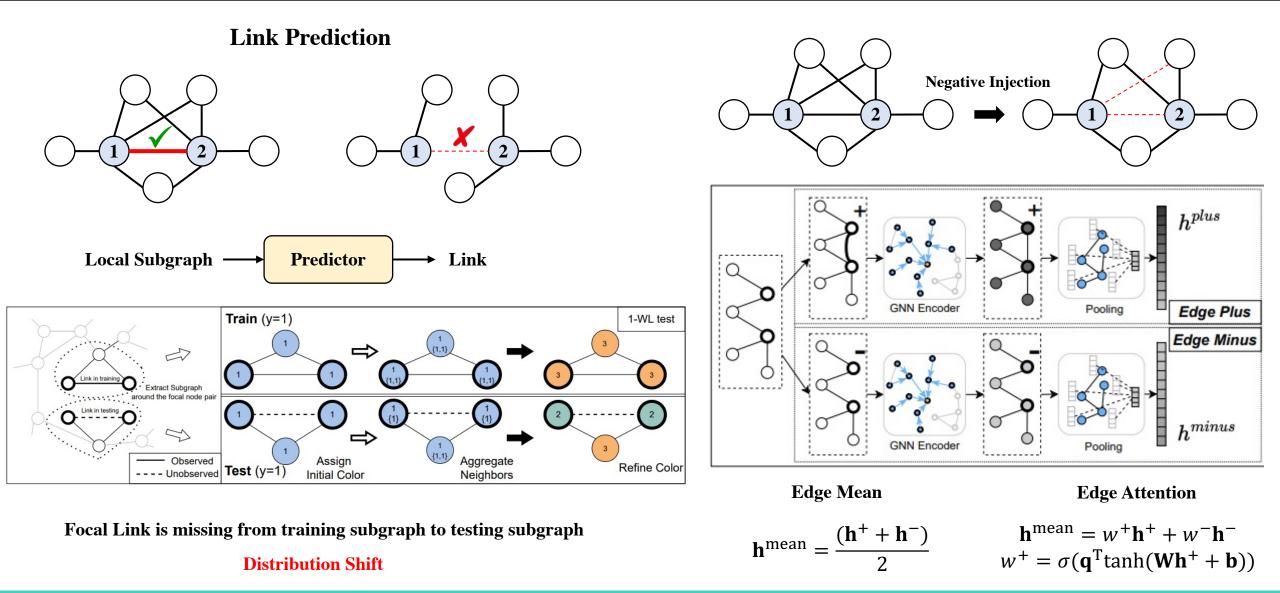
#### Within the Same Graph PubMed Chameleon Density Density 0 0 0.2 0.40.6 0.8 1.0 0.20.40.6 0.8 0.0 0.0 1.0h<sub>node</sub> hnode GLNN MLP GLNN Difference in acc model - GCN 0.1 Difference in acc model - GCN -0.2-0.20,0.0,2 0.2.0.4 0,40,6 0.60.0 0.00 0.0.0.2 0.2.0.\* 0.4.0.0 0.6.0.8 0.8.1.0 Homophily Ratio Range Homophily Ratio Range

In **homophily** graph, GNNs > MLP on **homophily** nodes In **heterophily** graph, GNNs > MLP on **heterophily** nodes

Ma, Yao, et al. "Is Homophily a Necessity for Graph Neural Networks?." ICLR 2021

Mao, Haitao, et al. "Demystifying Structural Disparity in Graph Neural Networks: Can One Size Fit All?." NeurIPS 2024

### **Topology Issue – Local Topology Issues –** Training-to-Testing Topology Shift



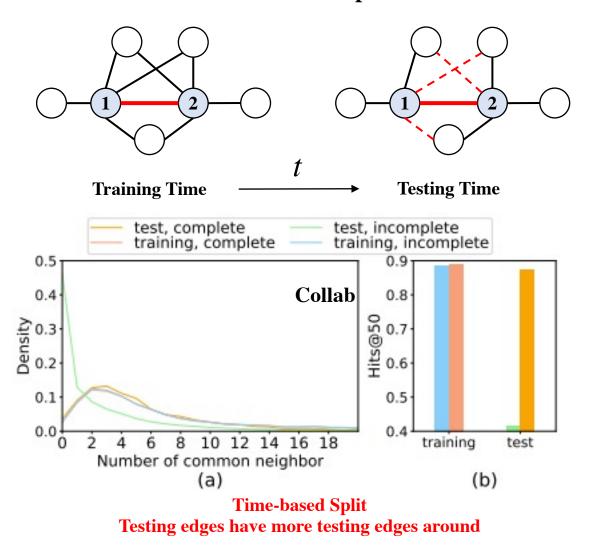


Zhang, Muhan et al. "Link prediction based on graph neural networks." NeurIPS, 2018 Dong, Kaiwen, et al. "Fakeedge: Alleviate dataset shift in link prediction." LOG, 2022

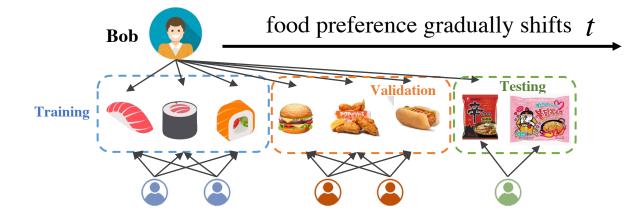
15

### **Topology Issue – Local Topology Issues –** # of Common Neighbor Shift

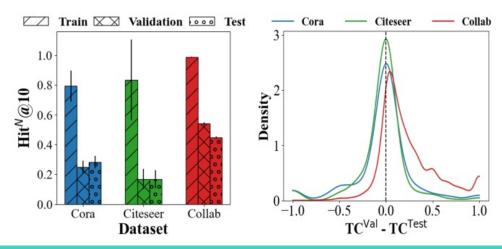
Link-centric Perspective







**TC**<sup>Val</sup>: Common interaction between training and validation **TC**<sup>Test</sup>: Common interaction between training and validation

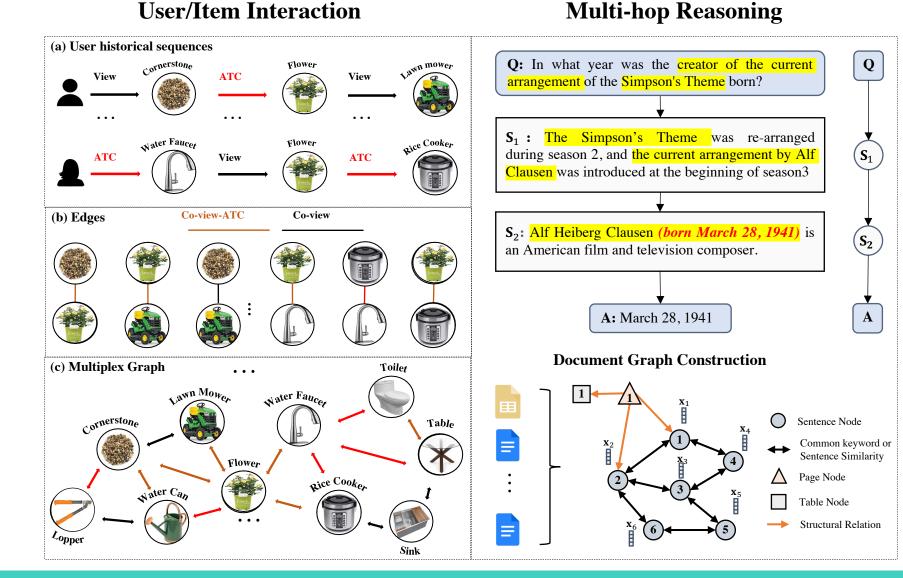


Wang, Xiyuan et al. "Neural Common Neighbor with Completion for Link Prediction." ICLR, 2024

### **Topology Issue – Missing Topology Issues**

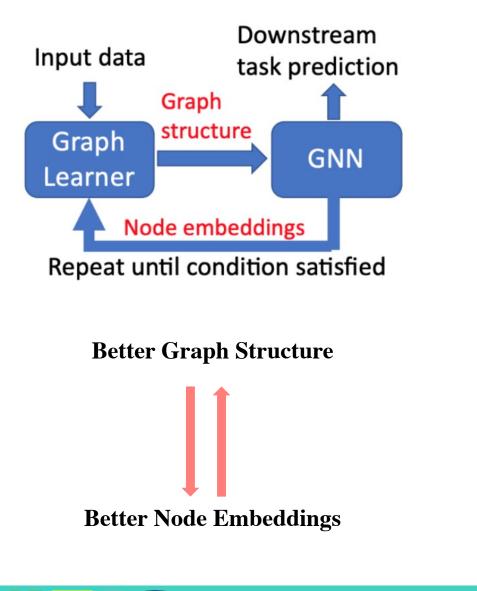
Sometimes Real-world Applications do not have Graphs!

But Graph can actually encode some useful information



#### Wang, Yu, et al. "Knowledge graph prompting for multi-document question answering." AAAI, 2024 Wang, Yu, et al. "Knowledge Graph-based Session Recommendation with Adaptive Propagation." WWW, 2024

### **Topology Issue – Missing Topology Issues**



GNN embeddings  

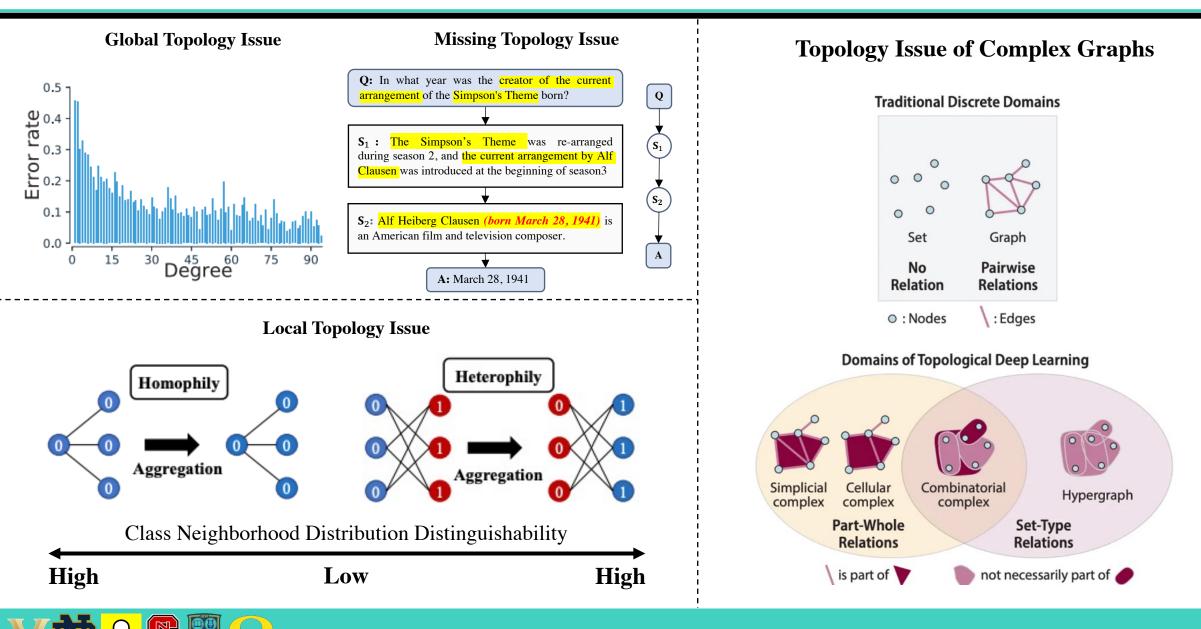
$$A_{ij}^{p} = \cos(\mathbf{w}_{p} \odot \mathbf{v}_{i}) \mathbf{w}_{p} \odot \mathbf{v}_{j}), A_{ij} = m^{-1} \sum_{p=1}^{m} a_{ij}^{p}$$

$$\mathbf{k}^{p} = \cos(\mathbf{w}_{p} \odot \mathbf{v}_{i}) \mathbf{w}_{p} \odot \mathbf{v}_{j}), A_{ij} = m^{-1} \sum_{p=1}^{m} a_{ij}^{p}$$

$$\mathbf{k}^{p} = (\mathbf{a}^{ij}) \mathbf{a}^{ij} < \epsilon$$

$$\mathbf{a}_{ij} = \begin{cases} \mathbf{A}_{ij}, \mathbf{a}_{ij} < \epsilon \\ 0, \mathbf{a}_{ij} > \epsilon \end{cases} \quad \mathbf{A}^{t} = \lambda \mathbf{L}^{0} + (1 - \lambda)(\eta f(\mathbf{A}^{t}) + (1 - \eta) f(\mathbf{A}^{1})) \\ \mathbf{L}^{0} = (\mathbf{D}^{0})^{-0.5} \mathbf{A}^{0}(\mathbf{D}^{0})^{-0.5} \\ \mathbf{Q}^{0} = \mathbf{A}^{-1} \mathbf{A}^{$$

### **Q&A and Future Work – Topology Issue**



- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

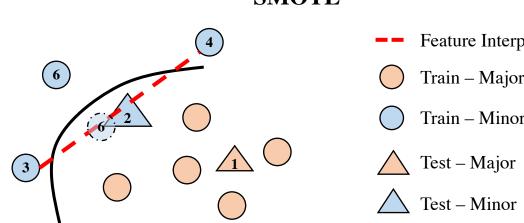
- Bias and Fairness Issues
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



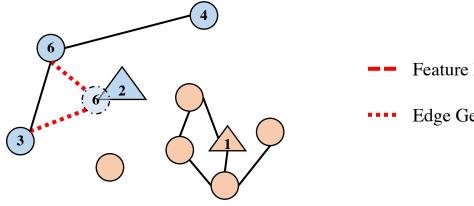
- Node-level Imbalance
- Graph-level Imbalance
- Edge-level Imbalance
- Future Directions and Q&A



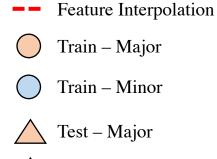
### **Imbalance Issues** – Node-level imbalance



Graph-structured data has both feature and edge

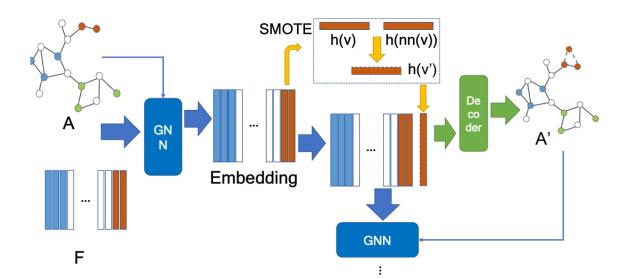


#### **SMOTE**



Feature Interpolation

**Edge Generation** 



GraphSMOTE

 $nn(v) = \operatorname{argmin}_{u} ||\mathbf{h}_{u}^{1} - \mathbf{h}_{v}^{1}||, \text{ s. t. } \mathbf{Y}_{u} = \mathbf{Y}_{v}$ 

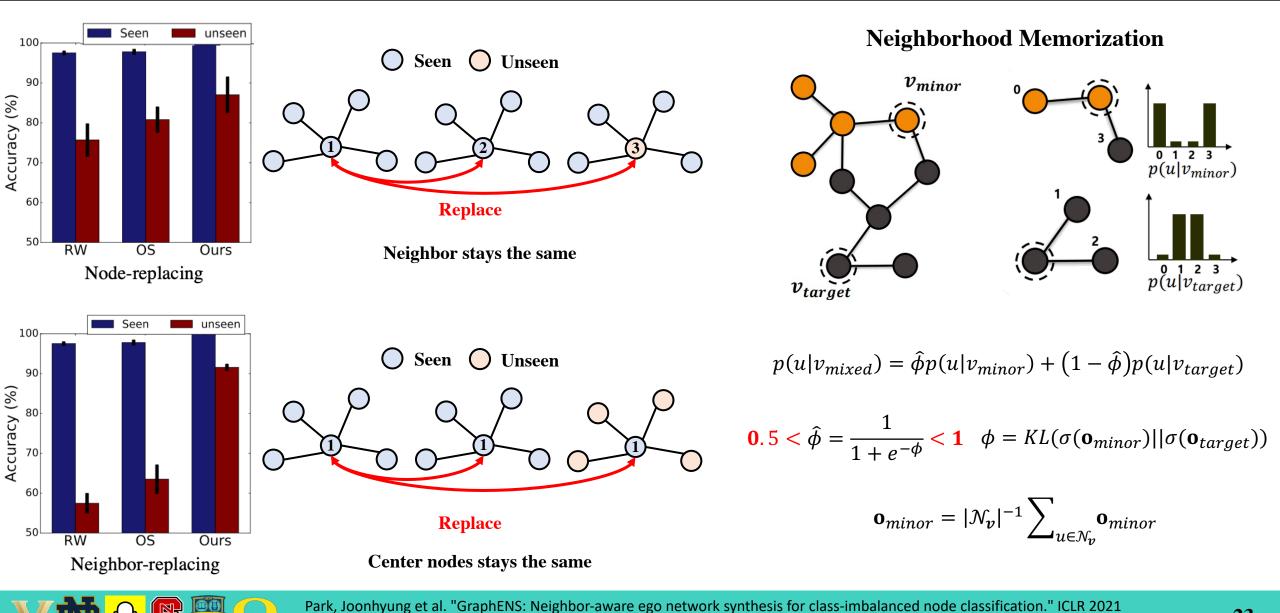
$$\mathbf{h}_{v'}^1 = (1 - \delta)\mathbf{h}_v^1 + \delta\mathbf{h}_{nn(v)}^1$$

$$\mathbf{A}_{v'u} = \begin{cases} 1, \text{ if } \mathbf{E}_{v'u} \ge \eta \\ 0, \text{ otherwise} \end{cases} \qquad \mathcal{L}_{edge} = \left| |\mathbf{E} - \mathbf{A}| \right|_{F}^{2}$$

 $\mathbf{E}_{mu} = softmax(\sigma(\mathbf{h}_{v}^{1}\mathbf{S}\mathbf{h}_{u}^{1}))$ 

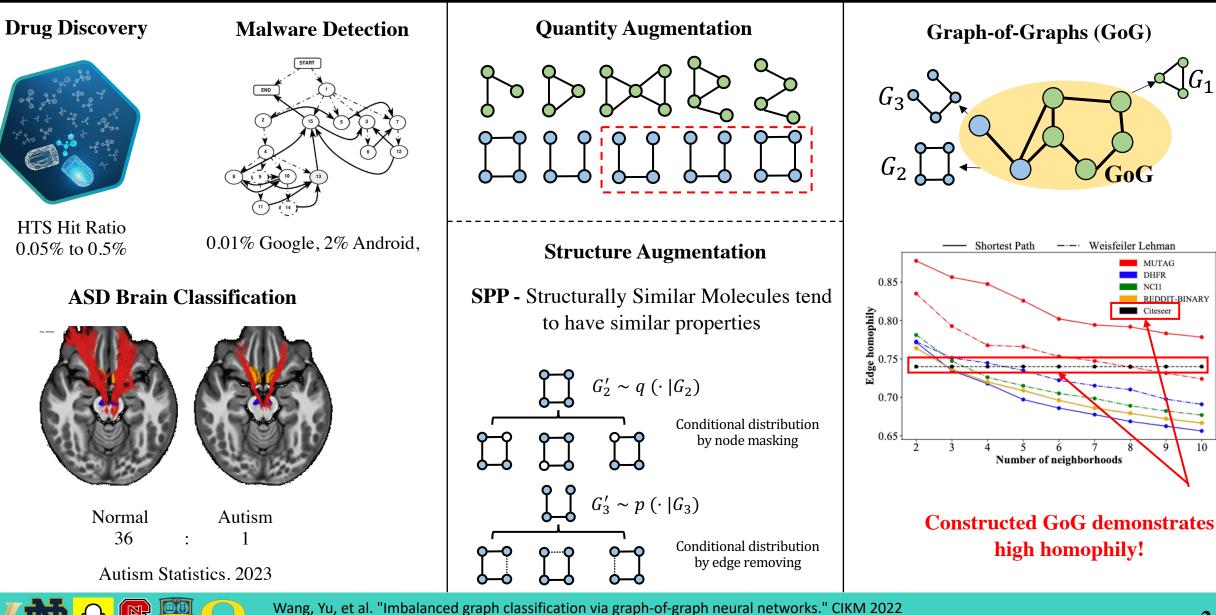
Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." JAIR, 2002 Zhao, Tianxiang., et al. "Graphsmote: Imbalanced node classification on graphs with graph neural networks." WSDM, 2021

### **Imbalance Issues –** Node-level imbalance



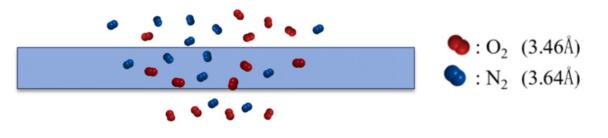
Ma, Yihong, et al. "Class-imbalanced learning on graphs: A survey." arXiv 2023

### **Imbalance Issues –** Graph-level imbalance



Liu, Yunchao Lance, et al. "Interpretable chirality-aware GNN for structure activity relationship modeling in drug discovery." AAAI 2023

### **Imbalance Issues –** Graph-level imbalance

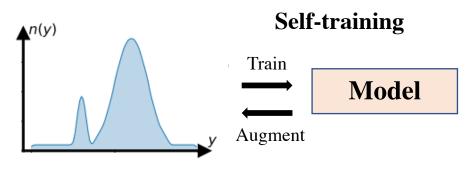


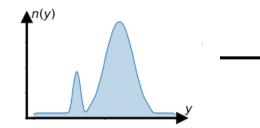
70 years, ~600 polymers, oxygen permeability , Polymer Gas Separation Membrane Database (1) Use Model to predict on unlabeled graphs and select those high-quality-one

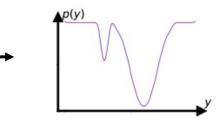
$$\sigma_i = \frac{1}{\operatorname{Var}\left(\left.\left\{f(g(G_{(i,j)}))\right\}_{j=1,2,\dots,B}\right.\right)}$$

### (2) Sample more for label interval with less training samples

### Imbalance Graph Regression!





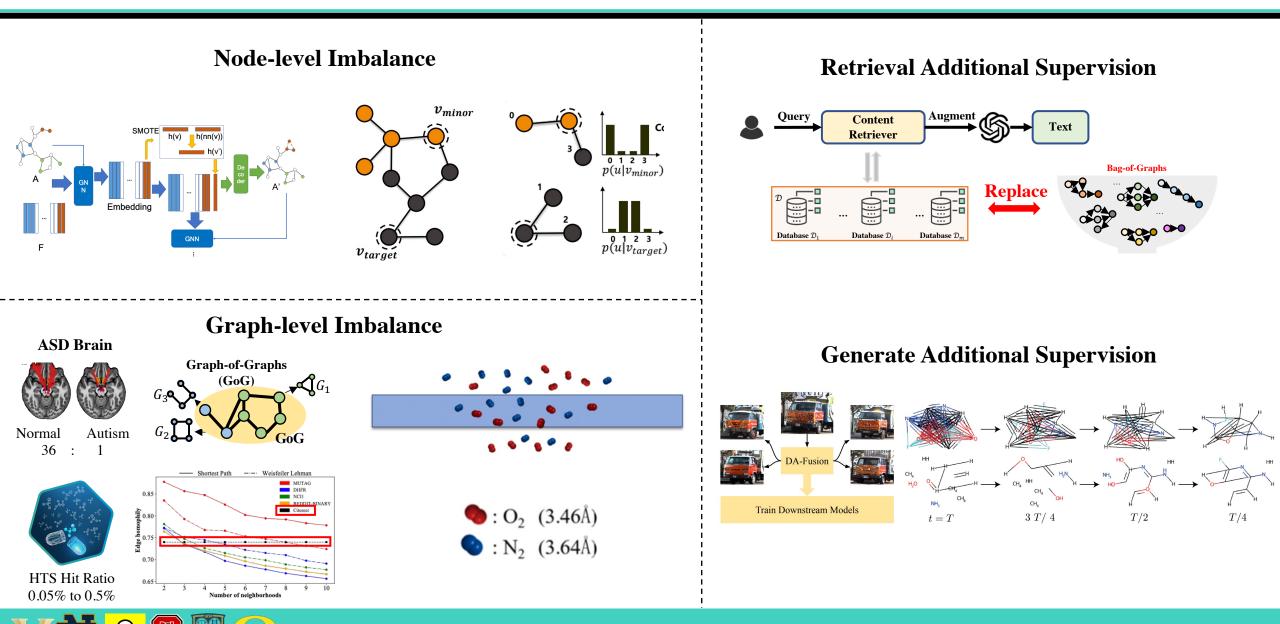


(3) Anchor-based Mix-up

 $a_i$ ,  $\mathbf{z}_i$ : anchor-label and embedding  $\begin{cases} \tilde{\mathbf{h}}_{(i,j)} &= \lambda \cdot \mathbf{z}_i + (1-\lambda) \cdot \mathbf{h}_j, \\ \tilde{y}_{(i,j)} &= \lambda \cdot a_i + (1-\lambda) \cdot y_j, \end{cases}$ 



### **Q&A and Future Work – Imbalance Issues**



# **Short Break (4 min)**



- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

- Bias and Fairness Issues
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



### **Bias and Fairness Issues -** Suicide Prevention

### • Why suicide prevention?

• Suicide is one of the leading causes of death in United States

AIAN Individual NATIONAL Multiple Gatekeeper 12.3% races Warning sign of suicide Black 10.0% friendship Total 9% 73**-TALK** (8255 White 8.9% suicidepreventionlifeline.org Hispanic 8.4% Gatekeeper training Toy example of a gatekeeper Asian 7.4% programs training program Suicide attempts

- Existing prevention strategies disproportionately affect different groups
- Key question

٠

• How to correct the bias and ensure fairness on graphs?

#### Percentage of high schoolers reporting a suicide attempt in the past 12 months, by race/ethnicity

by race/ethnicity

20.1%

### **Bias and Fairness Issues -** Fairness Definition

- Principle
  - Lack of favoritism from one side or another
- Rich fairness definitions
  - Group fairness
    - Statistical parity
    - Equal opportunity
    - Equalized odds
    - Accuracy parity
    - ...
  - Individual fairness ٠
  - Counterfactual fairness •
  - Degree fairness (on graphs) •

### **Fairness definition Two sides** Group fairness Individual fairness Counterfactual fairness Degree fairness Two group of nodes with same degree



Two demographic groups

Two data points

A data point and its counterfactual version



- Group Fairness on Graphs
- Individual Fairness on Graphs
- Degree Fairness on Graphs
- Future Directions and Q&A

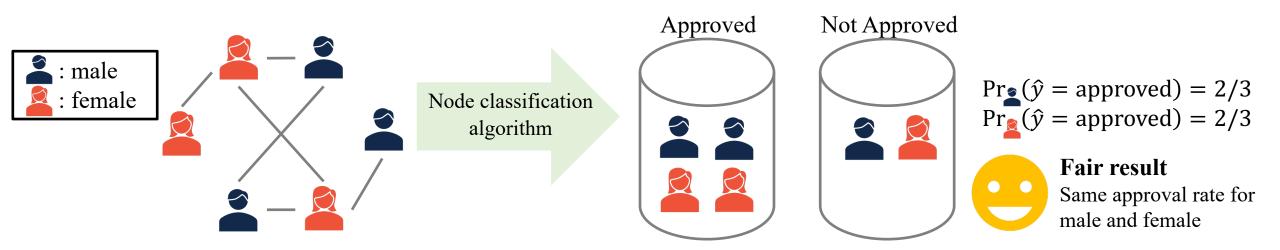


### **Group Fairness: Statistical Parity**

• Statistical parity = equal acceptance rate

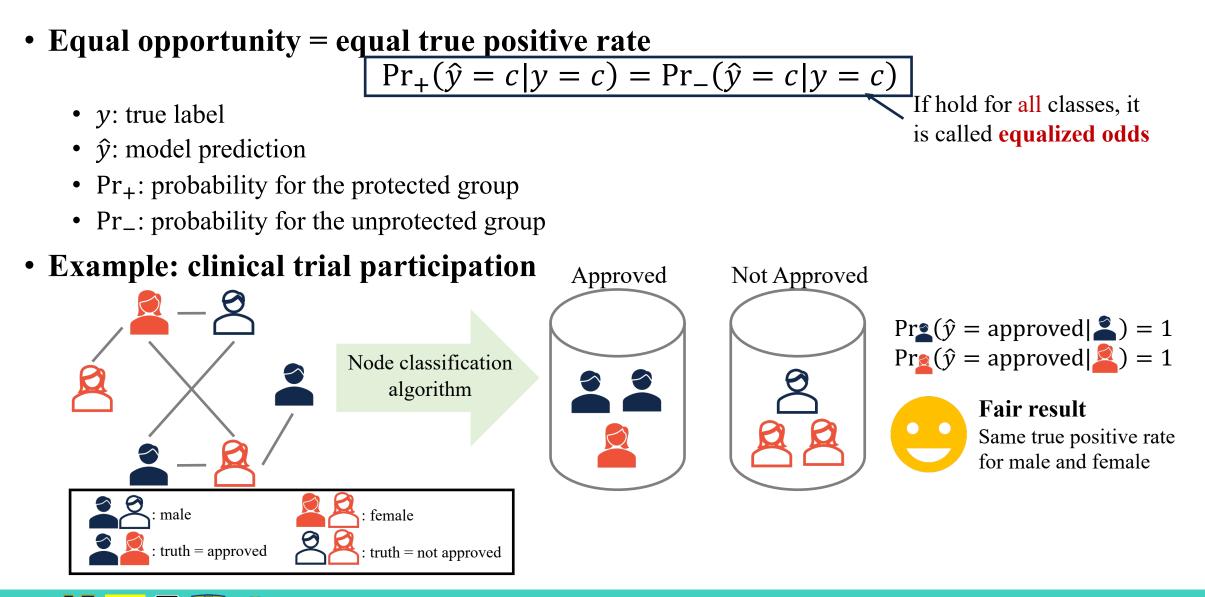
$$\Pr_+(\hat{y}=c) = \Pr_-(\hat{y}=c)$$

- $\hat{y}$ : model prediction
- Pr<sub>+</sub>: probability for the protected group
- Pr\_: probability for the unprotected group
- Also known as demographic parity, disparate impact
- Example: clinical trial participation





### **Group Fairness: Equal Opportunity**



### **Adversarial Learning for Fair Representation Learning**

### • Statistical parity

• Independence between the learned embedding z and a sensitive attribute a

$$\mathbf{z}_u \perp a_u$$
,  $\forall \text{ node } u$ 

where  $a_u$  is the sensitive value of node u

- Formulation
  - Mutual information minimization

 $I(\mathbf{z}_u, a_u) = 0, \forall \text{ node } u$ 

- Analogous to statistical parity in classification task
- Fail to predict  $a_u$  using  $\mathbf{z}_u \mathbf{z}_u$  ho information about  $a_u$  in  $\mathbf{z}_u$
- Solution
  - Adversarial learning

Corresponding to 'adversarial'

- Encoder: encode node into low-dimensional embedding space for downstream tasks
- Discriminator: fail to predict  $a_u$  using  $\mathbf{z}_u$

### Limitation #1: Full Access to Sensitive Attribute Information

### Adversarial learning

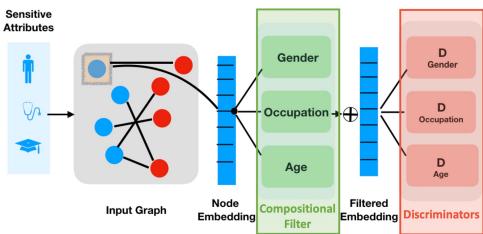
- Minimize a task-specific loss function to learn 'good' representations
- Maximize the error of predicting sensitive feature to learn 'fair' representations

### • Limitations

- Require the sensitive attribute of all training nodes to train a good discriminator
- Ignore the fact that sensitive information is hard to obtain due to privacy

### • Question

• What if we only have limited sensitive attribute information?

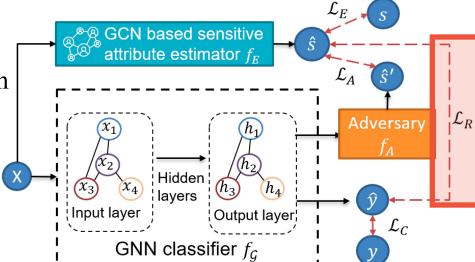


## FairGNN: Additional Supervision Signal

- Observation
  - Adversarial learning is unstable to train  $\leftarrow$  even worse with limited sensitive attribute
  - Failure to converge may also cause discrimination
- Key idea
  - Additional prerequisite of independence for additional supervision
  - Independence  $\rightarrow$  zero covariance
- Solution
  - Pseudo sensitive attribute from a sensitive attribute estimator
    - Not embedding from encoder
    - Offer pseudo-label for covariance minimization
  - Absolute covariance minimizer to minimize absolute covariance between model prediction  $\hat{y}$  and pseudo sensitive attribute  $\hat{s}$

 $\mathcal{L}_{R} = |\operatorname{cov}(\hat{s}, \hat{y})| = |\mathbb{E}[(\hat{s} - \mathbb{E}[\hat{s}])(\hat{y} - \mathbb{E}[\hat{y}])]|$ 

Absolute covariance to avoid minimizing negative covariance



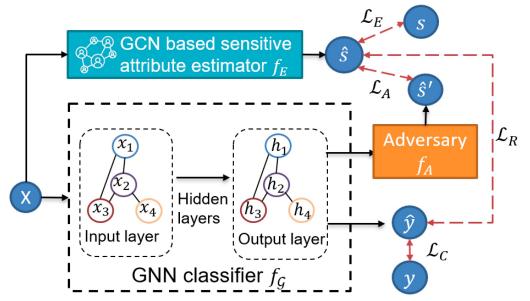
## **FairGNN: Overall Framework**

• Overall loss function

$$\mathcal{L} = \mathcal{L}_C + \mathcal{L}_E - \alpha \mathcal{L}_A + \beta \mathcal{L}_R$$

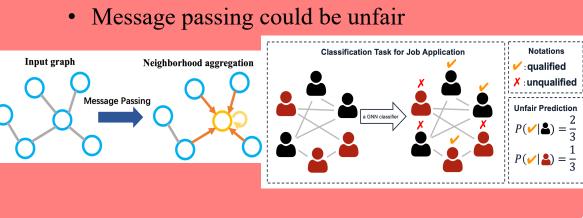
### • Intuition

- $\mathcal{L}_C$ : classification loss (e.g., cross entropy) for learning representative node representation
- $\mathcal{L}_E$ : sensitive attribute estimation loss for generating accurate pseudo sensitive attribute information
- $\mathcal{L}_A$ : adversarial loss for debiasing the learned node representation
- $\mathcal{L}_R$ : covariance minimizer to stabilize the adversary training



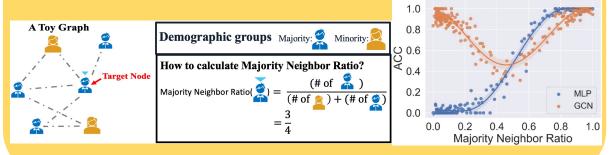
# **BeMap: Fair Topology View Generation**

#### • Motivation

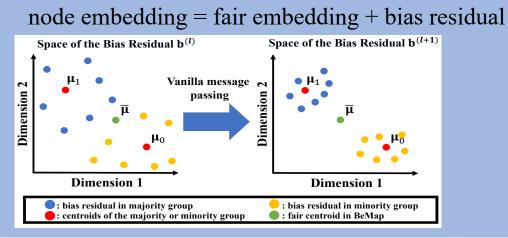


#### • Empirical evidence

• Predict node sensitive attribute using embeddings learned from GCN and MLP (no MP)



#### • Theoretical analysis



#### • Method: BeMap

- (In every training epoch) neighbor sampling for balanced neighborhood and MP on it
- Up to 80% bias reduction
- Comparable or even better classification accuracy
- More details in the paper

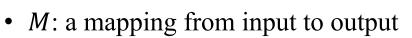
- Group Fairness on Graphs
- Individual Fairness on Graphs
- Degree Fairness on Graphs
- Future Directions and Q&A



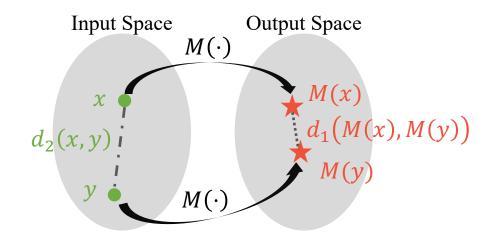
# **Individual Fairness**

### Definition

- Similar individuals should have similar outcomes
- Rooted in Aristotle's conception of justice as consistency
- Formulation: Lipschitz inequality (most common)  $d_1(M(x), M(y)) \le Ld_2(x, y)$

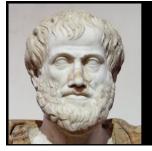


- $d_1$ : distance metric for output
- $d_2$ : distance metric for input
- *L*: a constant scalar





Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. Fairness through awareness. ITCS 2012.

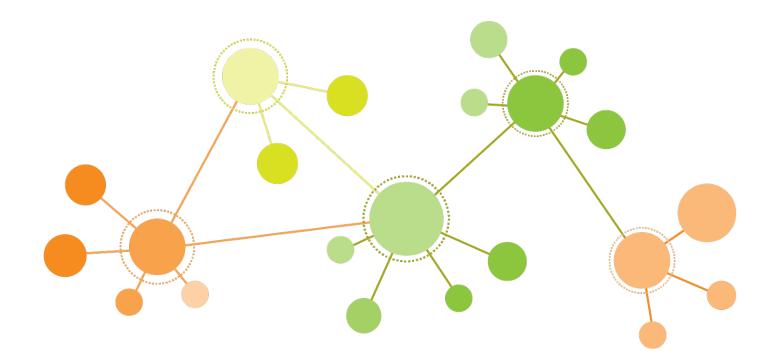


" Equality consists in the same treatment of similar persons, and no government can stand which is not founded upon justice."

# InFoRM: <u>In</u>dividual <u>F</u>airness <u>o</u>n <u>GRaph Mining</u>

#### • Research questions

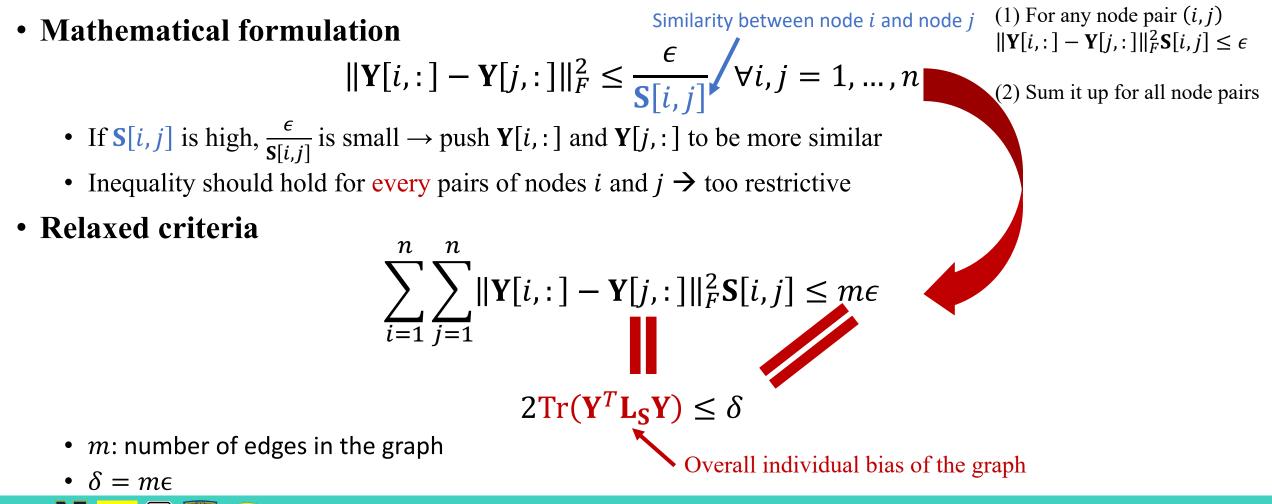
RQ1. Measure: how to quantitatively measure individual bias?RQ2. Algorithms: how to ensure individual fairness?RQ3. Cost: what is the cost of individual fairness?





# **InFoRM Measure: Quantifying Individual Bias**

- Principle
  - Similar nodes  $\rightarrow$  similar mining results



Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through awareness. ITCS 2012.

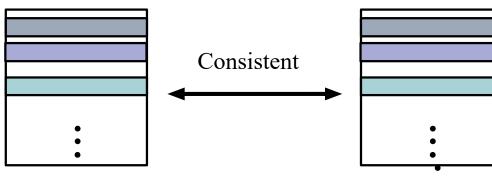
# **Alternative Measure: Ranking-Based Individual Fairness**

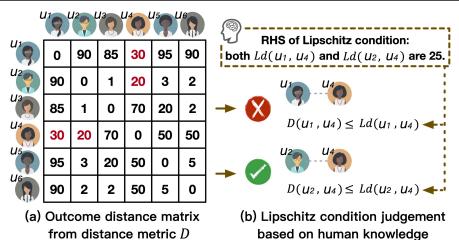
- Key challenge in InFoRM measure
  - Lipschitz condition (used in InFoRM)

$$d_1(M(x), M(y)) \le Ld_2(x, y)$$

- Distance comparison fails to calibrate between different individuals
- Definition
  - Given
    - (1) the node similarity matrix  $\mathbf{S}_G$  of the input graph G
    - (2) the similarity matrix  $S_{\widehat{Y}}$  of the GNN output  $\widehat{Y}$
  - $\widehat{\mathbf{Y}}$  is individually fair if, for each node *i*, it satisfies that

ranking list derived by  $\mathbf{S}_{G}[i, :] =$  ranking list derived by  $\mathbf{S}_{\widehat{\mathbf{Y}}}[i, :]$ 



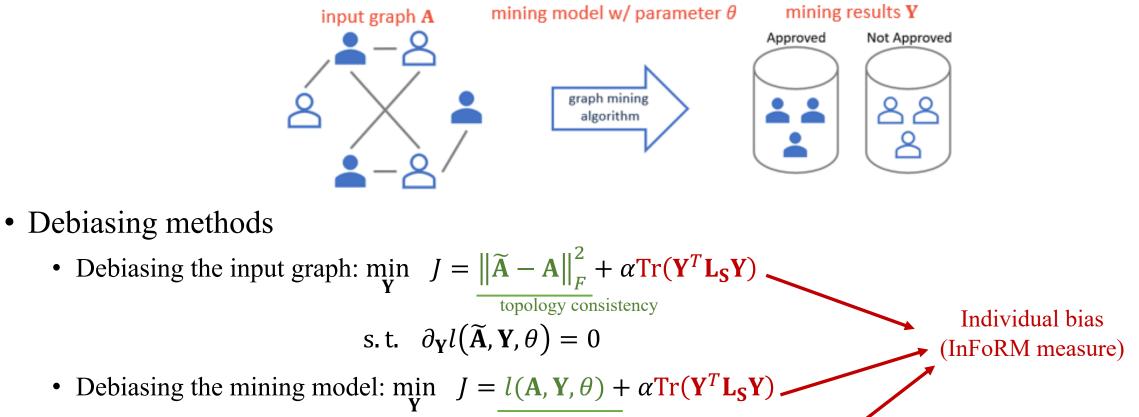


Kang, J., He, J., Maciejewski, R., & Tong, H. Inform: Individual fairness on graph mining. KDD 2020. Dong, Y., Kang, J., Tong, H., & Li, J.. Individual Fairness for Graph Neural Networks. A Ranking based Approach. KDD 2021.

# **InFoRM Measure: Mitigating Individual Bias**

Graph mining workflow

٠



Debiasing the mining results: min  $J = \|\mathbf{Y} - \overline{\mathbf{Y}}\|_F^2 + \alpha \operatorname{Tr}(\mathbf{Y}^T \mathbf{L}_{\mathbf{S}} \mathbf{Y})$ ٠

mining results consistency

task-specific loss function

# **InFoRM Cost: Characterizing Individual Bias**

### • Main focus

• Debiasing the mining results (model-agnostic)

### • Given

- A graph with *n* nodes and adjacency matrix **A**
- A node-node similarity matrix **S**
- Vanilla mining results  $\overline{\mathbf{Y}}$
- Debiased mining results  $\mathbf{Y}^* = (\mathbf{I} + \alpha \mathbf{S})^{-1} \overline{\mathbf{Y}}$
- If  $\|\mathbf{S} \mathbf{A}\|_F = \Delta$ , we have

$$\|\bar{\mathbf{Y}} - \mathbf{Y}^*\|_F \le 2\alpha\sqrt{n} \left(\Delta + \sqrt{rank(\mathbf{A})}\sigma_{\max}(\mathbf{A})\right)\|\bar{\mathbf{Y}}\|_F$$

- Key factors
  - The number of nodes *n* (i.e., size of the input graph)
  - The difference  $\Delta$  between **A** and **S**
  - The rank of  $A \rightarrow$  could be small due to (approximate) low-rank structures in real-world graphs
  - The largest singular value of  $A \rightarrow$  could be small if A is normalized

- Group Fairness on Graphs
- Individual Fairness on Graphs
- Degree Fairness on Graphs
- Future Directions and Q&A



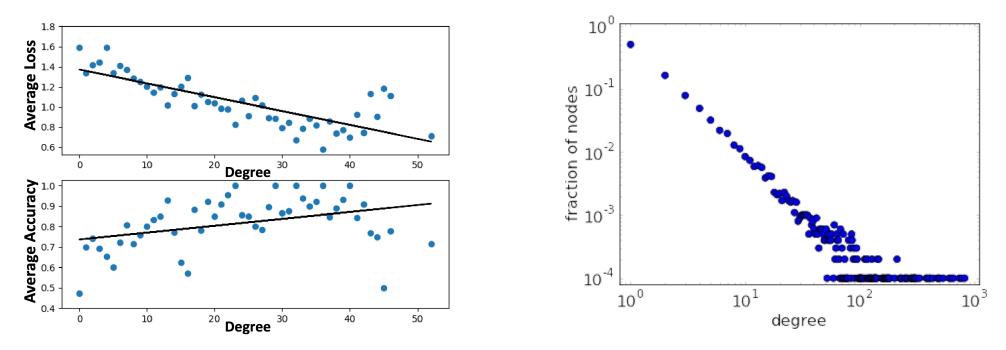
# **Degree Fairness: Definition and Motivation**

### • Definition

• Nodes of different degrees should have balanced utility on a graph mining task

### • Example: online advertising

- (A small portion of) celebrities often enjoy high-quality model performance
- (A large portion of) grassroot users often suffer from bad model performance





Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. Rawlsgcn: Towards rawlsian difference principle on graph convolutional network. WWW 2022. Subramonian, A., Kang, J., & Sun, Y. Theoretical and empirical insights into the origins of degree bias in graph neural networks. arXiv 2024.

# **Degree Unfairness: Pitfall of Graph Neural Networks**

### • Given

- (1) G = (A, X)
- (2) Any test node i in G with label c
- (3) A graph learning model M which output (before softmax) **Z**
- (4) Any wrong prediction  $c' \neq c$
- Our results
  - Misclassification rate

$$\Pr\left(\Pr(\hat{y}=c|i,M) > \Pr(\hat{y}=c'|M,i)\right) \le \frac{1}{1+R_{i,c'}}$$

where  $R_{i,c'} = \frac{\left(\mathbb{E}\left[\mathbf{Z}[i,c'] - \mathbf{Z}[i,c]\right]\right)^2}{\operatorname{Var}\left[\mathbf{Z}[i,c'] - \mathbf{Z}[i,c]\right]}$  (reciprocal of measure of dispersion from economics)

- $R_{i,c'}$  is positively correlated with the degree of node *i*
- Conclusion
  - high-degree nodes often have lower misclassification rate!

# **Causes #1: High-Degree Nodes with High Influence in Node Embeddings**

### • Given

- $\mathcal{V}_{labeled}$ : a set of labeled nodes  $\mathcal{V}_{labeled}$
- $\mathbf{W}^{(L)}$ : the weight of *L*-th layer in an *L*-layer GCN
- $d_i$ : degree of node i
- $\mathbf{x}_i$ : input node feature of node *i*
- $\mathbf{h}_{i}^{(L)}$ : output embeddings of node *i* learned by the *L*-layer GCN
- Influence of node *i* on GCN training

$$S(i) = \sum_{k \in \mathcal{V}_{\text{labeled}}} \left\| \mathbb{E} \left[ \partial \mathbf{h}_{i}^{(L)} / \partial \mathbf{x}_{k} \right] \right\| \propto \sqrt{d_{i}} \| \mathbf{W}^{(L)} \| \sum_{k \in \mathcal{V}_{\text{labeled}}} \sqrt{d_{k}}$$

### • Remark

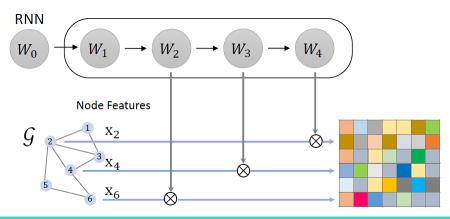
- For two nodes *i* and *j*, if  $d_i > d_j$ , then S(i) > S(j)
  - $\rightarrow$  Node with higher degree will have higher influence on GCN training

# Solution #1: Degree-Specific Graph Convolution

- Key idea
  - Degree-specific weights to encode degree information
- Given
  - $d_i$ : the degree of node i
  - $\mathbf{W}_{d_i}^{(l)}$ : the degree-specific weight w.r.t. degree of node *j*
- Degree-specific graph convolution

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left( \sum_{j \in \mathcal{N}_{i} \cup \{i\}} a_{ij} \left( \mathbf{W}^{(l)} + \mathbf{W}_{d_{j}}^{(l)} \right) \mathbf{h}_{j}^{(l)} \right)$$

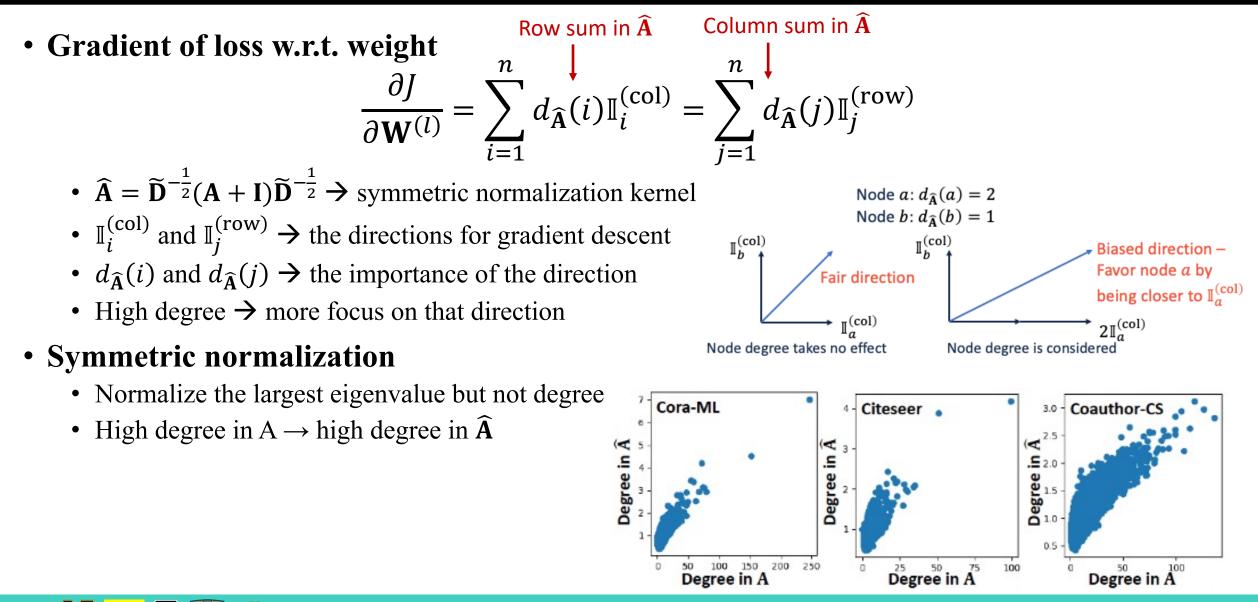
- DEMO-Net  $\rightarrow \mathbf{W}_{d_i}^{(l)}$  is generated randomly
- SL-DSGCN  $\rightarrow W_{d_i}^{(l)}$  is generated using a recurrent neural network





Tang, X., et. al. Investigating and mitigating degree-related biases in graph convolutional Networks. CIKM 2020 Wu, J., He, J., & Xu, J. Net: Degree-specific graph neural networks for node and graph classification. KDD 2019.

# **Causes #2: High-Degree Nodes with High Influence in Gradient**



- Key idea
  - Mitigate impacts of node degree by normalizing it to constant (i.e., 1)
  - Normalize the graph to a doubly stochastic graph
- Sinkhorn-Knopp (SK) algorithm
  - Iteratively normalize row and columns
  - (Our result) SK always finds the unique doubly stochastic form of symmetric normalization kernel
- Fair gradient computation

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}}\Big|_{\text{fair}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}_{\text{DS}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}$$

- $\widehat{A}_{DS} \rightarrow$  doubly-stochastic normalization of  $\widehat{A}$
- RawlsGCN family
  - RawlsGCN-Graph: during data pre-processing, compute  $\widehat{A}_{DS}$  and treat it as the input of GCN
  - RawlsGCN-Grad: during optimization (in-processing), treat  $\widehat{A}_{DS}$  as a normalizer to equalize the importance of node influence

- Group Fairness on Graphs
- Individual Fairness on Graphs
- Degree Fairness on Graphs
- Future Directions and Q&A



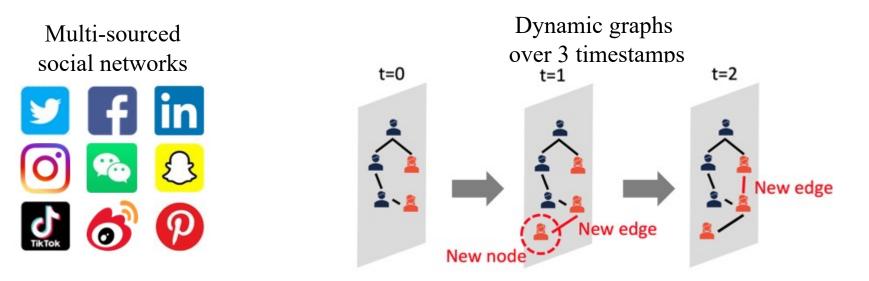
## Future Direction #1: Fairness beyond Plain and Static Graphs

### Observation

• Real-world graphs are often dynamic and/or multi-sourced

### • Research questions

- How to ensure fairness for multiple type of nodes/edges or multi-graphs?
- How to efficiently update the fair mining results at each timestamp?
- How to characterize the impact of graph dynamics and multiple sources over the bias measure?

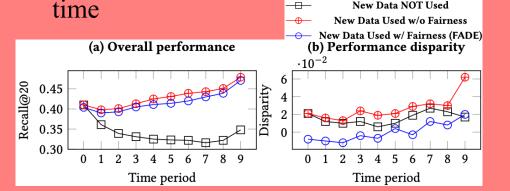




# Preliminary Work: Dynamic Group Fairness in Recommender Systems

### Observation

• performance disparity is getting larger over

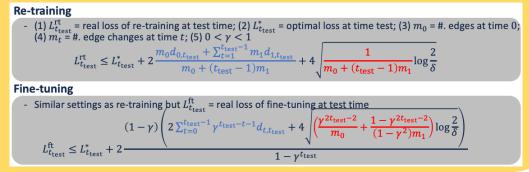


### • Method: FADE

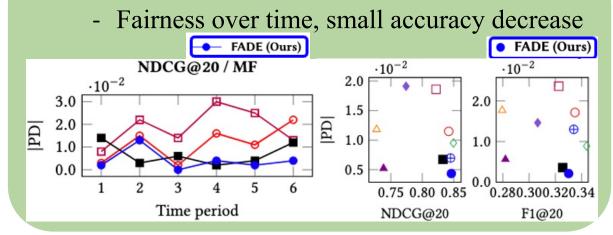
- Model-agnostic
- Fine-tuning with newly observed data
- Periodically re-training to keep historical information
- Linear complexity w.r.t. # new data

#### • Theory

• Fine-tuning is better than re-training for fairness over time



#### • Results



# Future Direction #2: Fairness on Graphs → Fairness with Graphs

### • Fairness on graphs

- Graph as data
- Nodes = entities
- Social networks  $\rightarrow$  nodes = users
- Citation networks  $\rightarrow$  nodes = papers
- Web graph  $\rightarrow$  nodes = webpages

### • Fairness with graphs

- Graph as context
- Nodes = models/datasets/modalities
- Example: supply chain
  - 1. Demand + supply for medical resources
  - 2. Models to allocate medical resources



• How can we leverage demand + supply + model collectively for fair supply chain?



## **Future Direction #3: Benchmark and Evaluation Metrics**

### Observation

- No consensus on the experimental settings for fair graph learning
- Which data to compare? What sensitive attribute to consider?
- Which evaluation metrics for each type of fairness?

#### • Consequences

- Different settings for different research works
- Hardly fair comparison among fair graph learning methods
- Hardly deployable methods in real-world scenarios

### • Call for community effort

- Evaluation benchmark for consistent experimental settings and fair comparison
- Collection of large-scale, realistic, but challenging dataset for evaluation



- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

- Bias and Fairness Issues
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



• Graph Data Augmentations

• Self-supervised Learning on Graphs

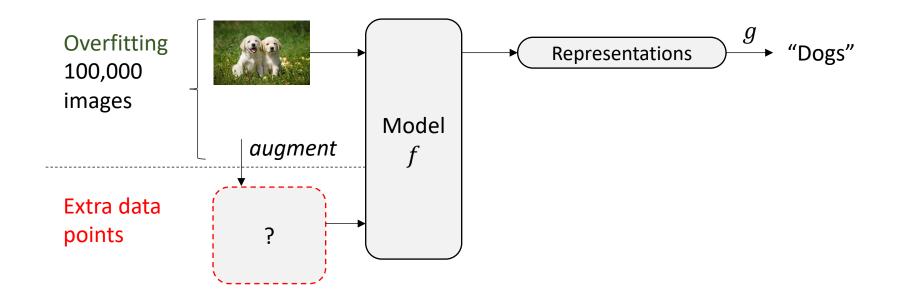


Wikipedia: Techniques used to increase the amount of data by adding *slightly modified* copies of already existing data or *newly created* synthetic data from existing data.

- Why data augmentation?
  - It helps reduce overfitting when training a machine learning model.
  - The acquisition of labeled graph data can be expensive.



Wikipedia: Techniques used to increase the amount of data by adding *slightly modified* copies of already existing data or *newly created* synthetic data from existing data.





Wikipedia: Techniques used to increase the amount of data by adding *slightly modified* copies of already existing data or *newly created* synthetic data from existing data.

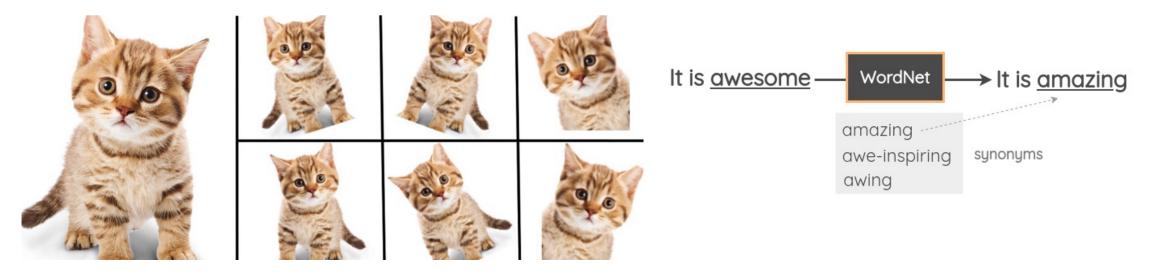
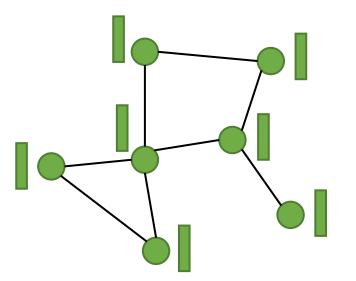


Image sources: https://www.kdnuggets.com/2018/05/data-augmentation-deep-learning-limited-data.html https://amitness.com/2020/05/data-augmentation-for-nlp/



# **Graph Data Augmentation**

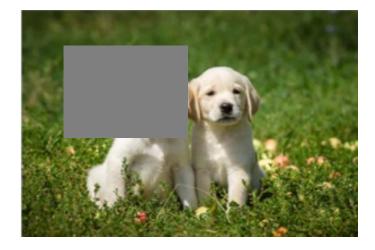
- Structure Augmentation
  - Drop/add nodes/edges, etc.
- Feature Augmentation
  - Mask off features, etc.
- Label Augmentation
  - Label propagation, etc.





# **Graph Data Augmentation**

- Rule-based augmentations
  - Designed based on heuristic rules
  - Usually efficient and scalable
  - Simple and easy to implement
    - Commonly used in self-supervised learning
- Learned augmentations
  - Involve learning during augmentation
  - Augmented data better fits GML models
    - Better performances in supervised learning







# **Rule-based Graph Data Augmentation Approaches**

|                | Methodology                    | Representative Works                                                          |             | Task Level     |      | U U         | mented Dat  |                |
|----------------|--------------------------------|-------------------------------------------------------------------------------|-------------|----------------|------|-------------|-------------|----------------|
|                |                                | 1                                                                             | Node        | Graph          | Edge | Structure   | Feature     | Label          |
| Rule-based GDA | Stochastic Dropping/Masking    | DropEdge [87]<br>DropNode [27]<br>NodeDropping [127]<br>Feature Masking [100] |             | 5<br>5         |      | 5           | 1           |                |
|                |                                | Feature Shuffling [106]<br>DropMessage [23]<br>Subgraph Masking [127]         | 1           | 1              | 1    | 1           | 5           |                |
|                | Subgraph Cropping/Substituting | GraphCrop [111]<br>M-Evolve [145]<br>MoCL [97]                                |             | 5<br>5<br>5    |      |             | 1           |                |
|                | Virtual Node                   | Graphormer [125]<br>GNN-CM <sup>+</sup> /CM [45]                              |             | 1              | 1    |             |             |                |
|                | Mixup                          | Graph Mixup [115]<br>ifMixup [37]<br>Graph Transparent [85]<br>G-Mixup [39]   | 1           | \$<br>\$<br>\$ |      | 5<br>5<br>5 | 5<br>5<br>5 | \$<br>\$<br>\$ |
|                | SMOTE                          | GraphSMOTE [140]<br>GATSMOTE [75]<br>GNN-CL [70]                              | 1<br>1<br>1 |                |      | 1           | J<br>J      |                |
|                | Diffusion                      | GDA [60]                                                                      | 1           |                |      | 1           |             |                |
|                | Counterfactual Augmentation    | CFLP [141]                                                                    |             |                | 1    |             |             | 1              |
|                | Attribute Augmentation         | LA-GNN [74]<br>SR+DR [93]                                                     | 1           |                |      |             | \<br>\      |                |
|                | Pseudo-labeling                | Label Propagation [147]<br>PTA [21]                                           | 1           |                |      |             |             | √<br>✓         |

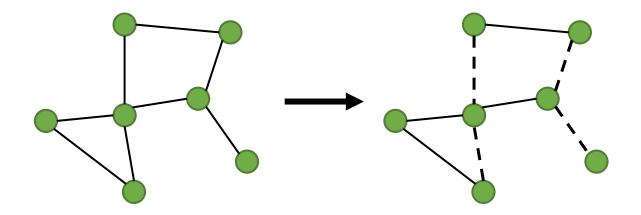


### DropEdge

• Dropout on edges: randomly remove some edges at the beginning of every training epoch.

$$\tilde{\mathbf{A}} = \mathbf{M} \odot \mathbf{A}$$
  
 $\mathbf{M} \in \{0, 1\}^{N \times N}$  s.t.  $M_{i,j} = Bernoulli(\varepsilon)$ 

• Prevents overfitting and over-smoothing.





# **Other Stochastic Masking/Dropping Methods**

- Node Dropping
  - Randomly removing part of the nodes.
- Feature Masking
  - Randomly mask off node features.
  - Random row-shuffling on node feature matrix  $\mathbf{X}$ .
- Subgraph Masking
  - Randomly mask off a connected subgraph.

Feng, et al. Graph Random Neural Networks for Semi-supervised Learning on Graphs. NeurIPS 2020. You, et al. Graph Contrastive Learning with Augmentations. NeurIPS 2020. Thakoor, et al. Large-scale Representation Learning on Graphs via Bootstrapping. ICLR 2022. Velickovic, et al. Deep Graph Infomax. ICLR 2019.

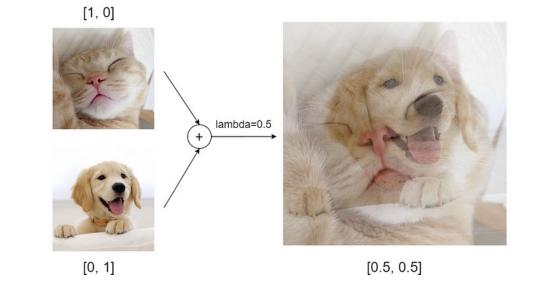


Mixup

• Mixup: generates a weighted combination of random pairs from the training data.

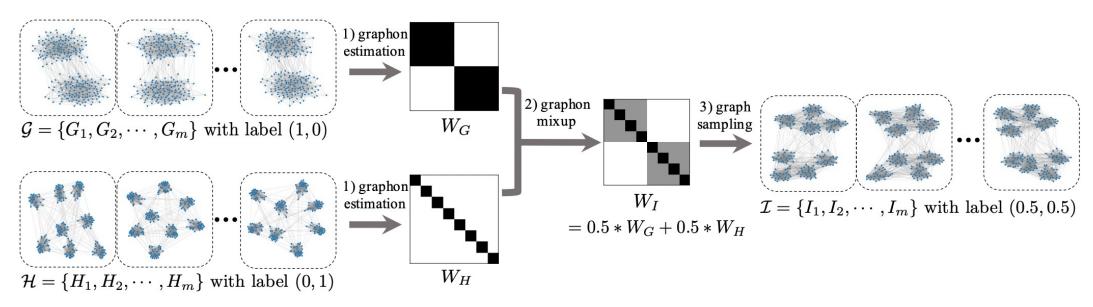
$$\tilde{\boldsymbol{x}} = \lambda \boldsymbol{x}_i + (1 - \lambda) \boldsymbol{x}_j, \\ \tilde{\boldsymbol{y}} = \lambda \boldsymbol{y}_i + (1 - \lambda) \boldsymbol{y}_j.$$

 Manifold Mixup: interpolating hidden states.



Zhang, et al. Mixup: Beyond Empirical Risk Minimization. ICLR 2018. Verma, et al. Manifold Mixup: Better Representations by Interpolating Hidden States. ICML 2019. Image source: https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixupaugmentation-with-codes-33288db92de5

# **G-Mixup**



- 1. Graphon estimation:
- 2. Graphon Mixup:
- 3. Graph Generation:
- 4. Label Mixup:

 $\mathcal{G} \to W_{\mathcal{G}}, \mathcal{H} \to W_{\mathcal{H}}$  $W_{\mathcal{I}} = \lambda W_{\mathcal{G}} + (1 - \lambda) W_{\mathcal{H}}$  $\{I_1, I_2, \cdots, I_m\} \stackrel{\text{i.i.d}}{\sim} \mathbb{G}(K, W_{\mathcal{I}})$  $\mathbf{y}_{\mathcal{I}} = \lambda \mathbf{y}_{\mathcal{G}} + (1 - \lambda) \mathbf{y}_{\mathcal{H}}$ 

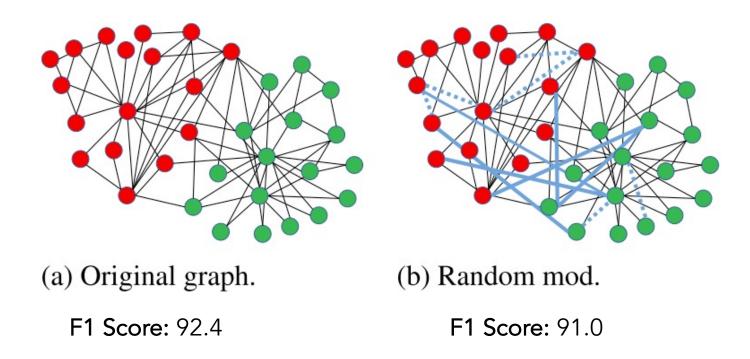


### **Learned Graph Data Augmentation Approaches**

| Learned GDA | Graph Structure Learning   | GAug [140]<br>GLCN [47]<br>LDS [28]<br>ProGNN [50]<br>Eland [141] |        |  |
|-------------|----------------------------|-------------------------------------------------------------------|--------|--|
|             | Graph Adversarial Training | RobustTraining [125]<br>AdvT [18]<br>FLAG [63]<br>GraphVAT [25]   |        |  |
|             | Graph Rationalization      | GREA [71]<br>AdvCA [97]                                           | √<br>✓ |  |
|             | Automated Augmentation     | AutoGDA [144]<br>GraphAug [79]<br>JOAO [130]<br>MolCLE [116]      |        |  |



Do not leverage task information and could hurt the downstream performance

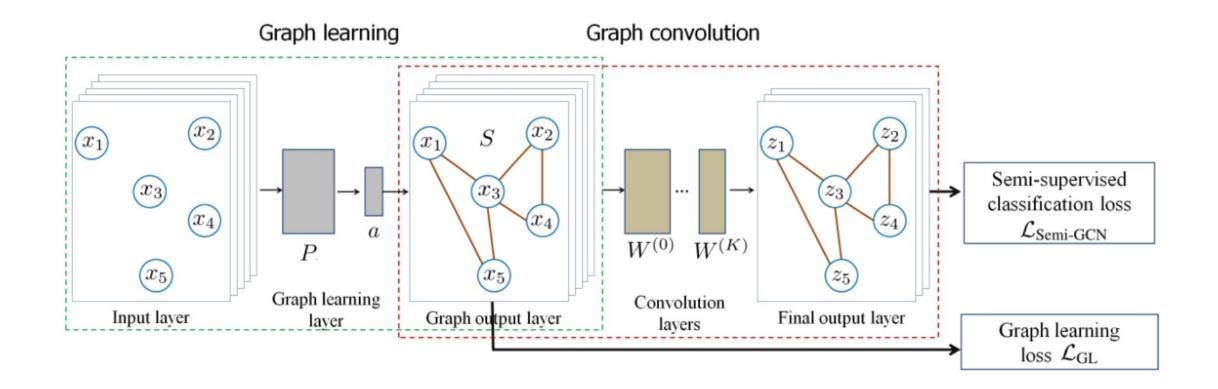


### **Learned Graph Data Augmentation Approaches**

- Graph Structure Learning
  - Augment data with good graph structures
- Adversarial Training
  - Augment data with adversarial examples
- Rationalization
  - Augment data by changing graph environment
- Automated Augmentation
  - Automatically combine different augmentations



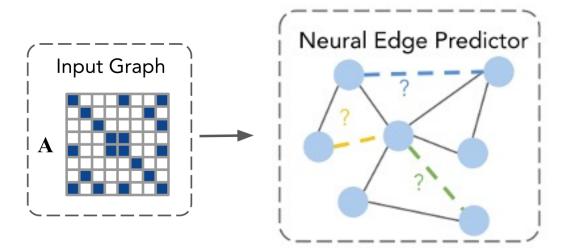
### Graph Learning + Graph Convolution





### What are better graph structures?

- "Noisy" edges should be removed Inter-class edges
- "Missing" edges should be added Intra-class edges

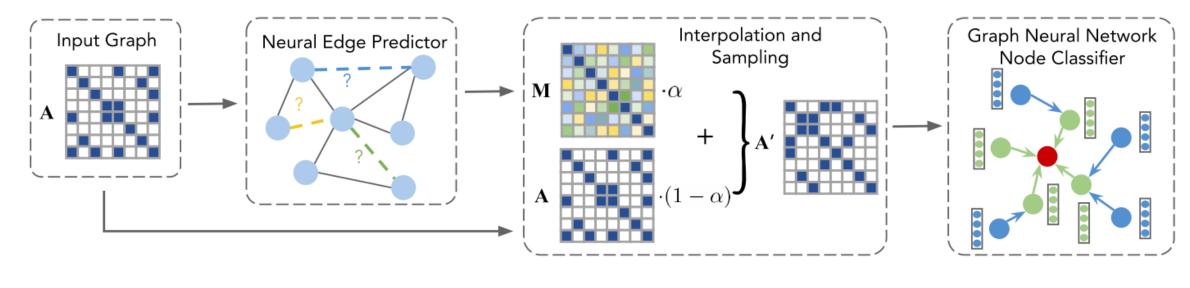


$$\mathbf{M} = \sigma \left( \mathbf{Z} \mathbf{Z}^T \right), \text{ where } \mathbf{Z} = f_{GCL}^{(1)} \left( \mathbf{A}, f_{GCL}^{(0)} \left( \mathbf{A}, \mathbf{X} \right) \right)$$

M models node similarities



# **GAug: Interpolation and Sampling**



$$\mathbf{P}_{ij} = \alpha \mathbf{M}_{ij} + (1 - \alpha) \mathbf{A}_{ij}$$

$$\downarrow \text{Bernoulli sampling}$$

$$\mathbf{A}'_{ij}$$



- Graph Self-Supervised Learning aims to learn generalizable node/edge/graph representations without using any humanannotated labels
  - Graph Generative Modeling
    - Learn generalizable representations by reconstructing the node features or/and graph structure

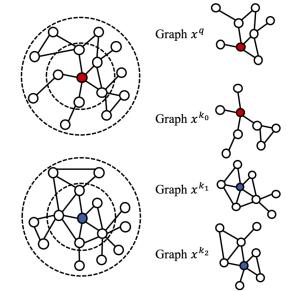


- Graph Self-Supervised Learning aims to learn generalizable node/edge/graph representations without using any humanannotated labels
  - Graph Generative Modeling

Learn generalizable representations by reconstructing the node features or/and graph structure

### • Graph Contrastive Learning (GCL)

Create different views from the unlabeled input graph via data augmentation

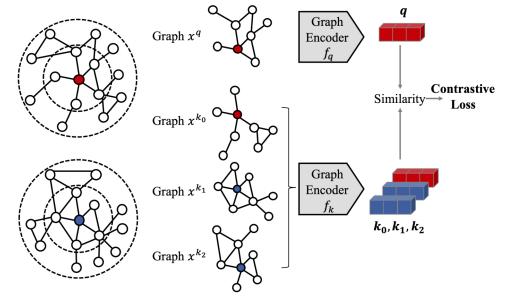




- Graph Self-Supervised Learning aims to learn generalizable node/edge/graph representations without using any humanannotated labels
  - Graph Generative Modeling

Learn generalizable representations by reconstructing the node features or/and graph structure

- Graph Contrastive Learning (GCL)
  - ➤Create different views from the unlabeled input graph via data augmentation
  - Maximize the agreement between representations of different augmented views of the same instance



# **Typical Unsupervised Graph Contrastive Learning**

### Graph Data Augmentation

≻Create different views of each instance (e.g., node, subgraph)

>Arbitrary graph data augmentation (e.g., edge dropping, feature masking)

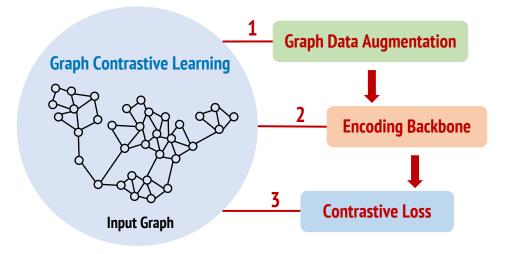
### • Encoding Backbone

Encode different augmented viewsShallow GNNs (e.g., 2-layer GCN)

### Contrastive Loss

Maximize the agreement between representations learned from different augmented views

➤Instance-level contrastive learning





- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

- Bias Issue
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary



- Missing Data
- Adversarial Attacked Data

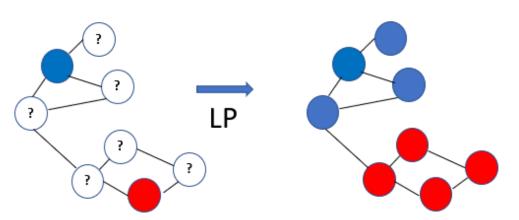


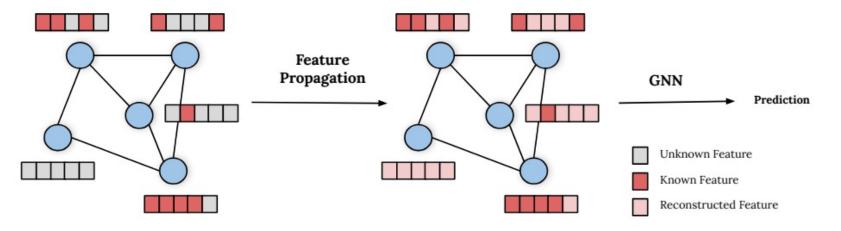
There are various solutions to deal with missing labels:

- Label propagation (LP)
- Self-supervised learning
- Unsupervised learning
- ...

### What if we have missing features?

• Feature propagation





What if we have missing features?

• Feature propagation

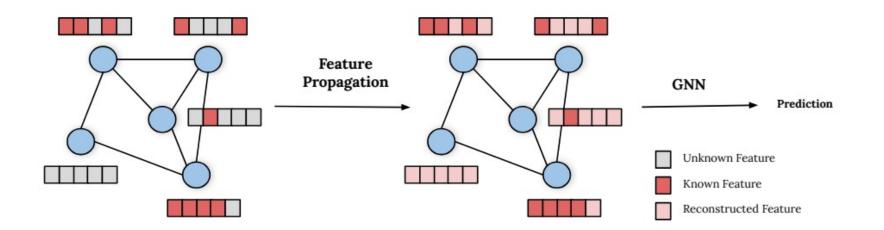
Algorithm 1 Feature Propagation

- 1: Input: feature vector  $\mathbf{x}$ , diffusion matrix  $\tilde{\mathbf{A}}$
- 2:  $\mathbf{y} \leftarrow \mathbf{x}$

#### 3: while x has not converged do

4:  $\mathbf{x} \leftarrow \tilde{\mathbf{A}}\mathbf{x}$   $\triangleright$  Propagate features 5:  $\mathbf{x}_k \leftarrow \mathbf{y}_k$   $\triangleright$  Reset known features

6: end while



### **Comparison** of Feature Propagation to Label Propagation

#### **Feature Propagation:**

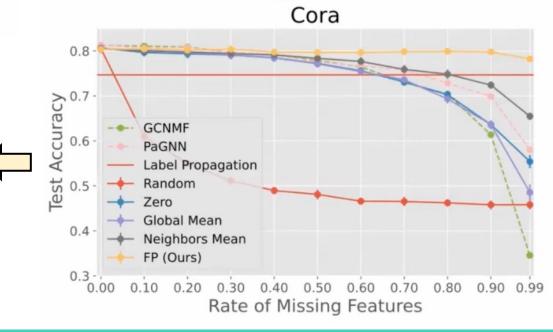
- Propagates features (continuous)
- Prediction is made by a GNN on top of the propagated features
- Uses features, and a low % of them being present is enough for good performance

#### **Experiment Results**

Across different levels of missing features, Feature Propagation achieves the best performance

#### Label Propagation:

- Propagates class labels (discrete)
- Prediction is obtained directly from propagating class labels
- Feature-agnostic



Beyond missing features on graphs, can we solve the general missing data problem?

|                       |       |       | -     |       |       |
|-----------------------|-------|-------|-------|-------|-------|
|                       | $F_1$ | $F_2$ | $F_3$ | $F_4$ | Y     |
| $O_1$                 | 0.3   | 0.5   | NA    | 0.1   | $y_1$ |
| $O_2$                 | NA    | NA    | 0.6   | 0.2   | $y_2$ |
| <i>O</i> <sub>3</sub> | 0.3   | NA    | NA    | 0.5   | ?     |

Data Matrix

with Missing Values

Labels

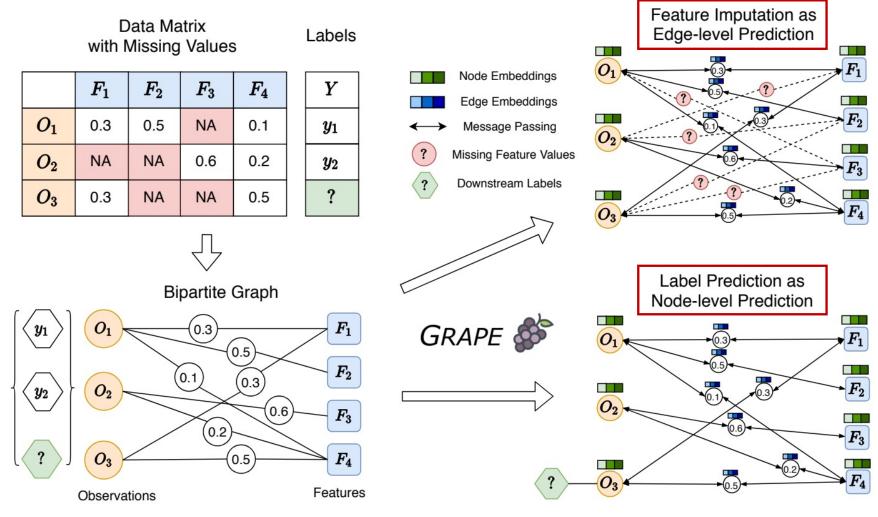
### Two ways of approaching missing data problems:

- Feature imputation: missing feature values are estimated based on observed values
- Label prediction: downstream labels are learned directly from incomplete data

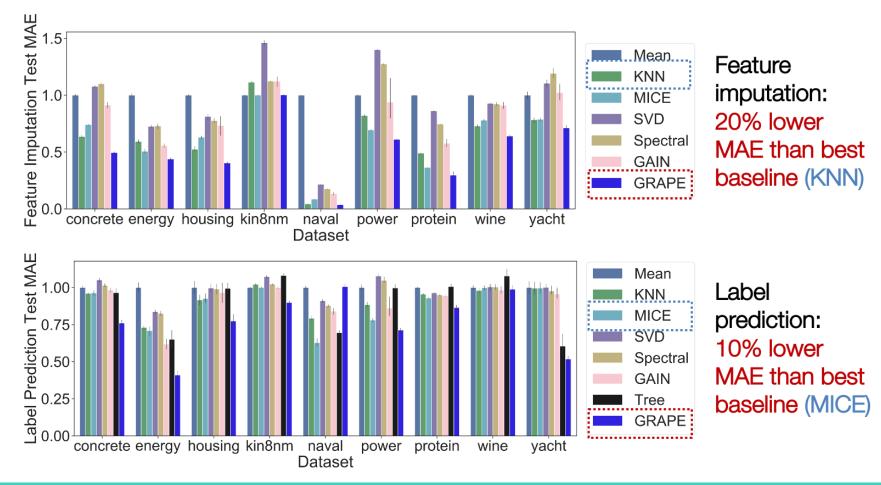
**Issues:** 

- Existing methods fail to make full use of <u>feature values from other observations</u>
- Existing methods tend to make <u>biased assumptions</u> about the missing values by initializing them with special default values

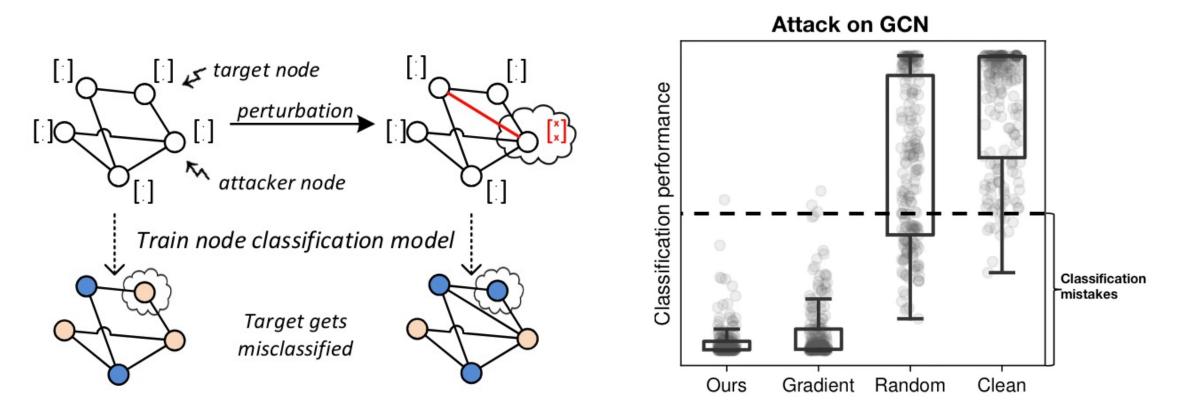
GRAPE: reformulate the tasks as graph tasks



GRAPE yields 20% lower mean absolute error for feature imputation, and 10% lower MAE for label prediction



**Observation:** Small perturbations of the graph structure and node features lead to misclassification of the target



 $\mathbf{V}$ 

Can we leverage small data perturbations to improve performance? Yes, adversarial training

Adversarial training is the process of crafting adversarial data points, and then injecting them into training data

$$\min_{\boldsymbol{\theta}} E_{(x,y)\sim\mathcal{D}} \left[ \max_{\|\boldsymbol{\delta}\|_{p} \leq \epsilon} L\left(f_{\boldsymbol{\theta}}(x+\boldsymbol{\delta}),y\right) \right]$$

Find the optimal perturbation sample to achieve maximum loss

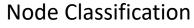
Find the optimal model parameters to resist the attack of perturbation sample

D: distribution  $||.||_{p}: l_{p}$ -norm distance metric  $\epsilon$ : perturbation budget



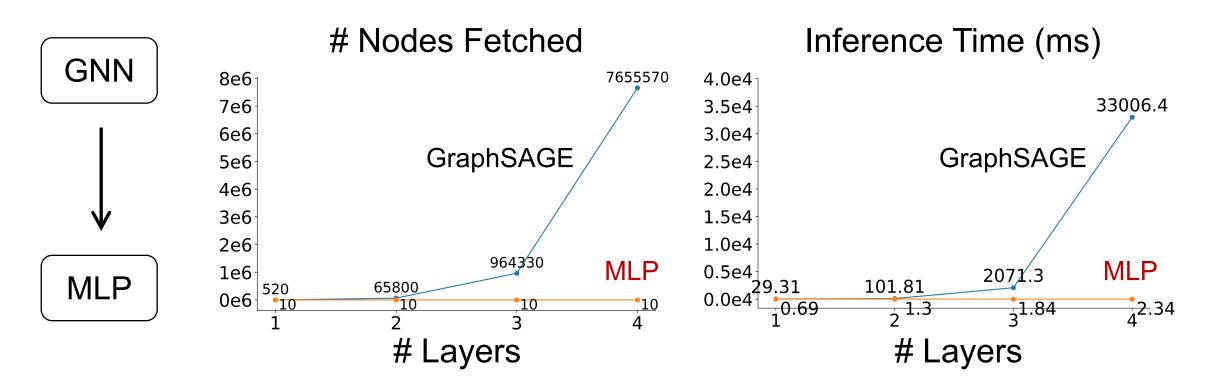
Can we leverage small data perturbations to improve performance? Yes, adversarial training

| Node classification |                                    |                                    |                           |  |  |
|---------------------|------------------------------------|------------------------------------|---------------------------|--|--|
|                     | ogbn-products                      | ogbn-proteins                      | ogbn-arxiv                |  |  |
| Backbone            | Test Acc                           | Test ROC-AUC                       | Test Acc                  |  |  |
| GCN                 | -                                  | $\textbf{72.51}{\pm}0.35$          | $71.74 \pm 0.29$          |  |  |
| +FLAG               | -                                  | $71.71 \pm 0.50$                   | $\textbf{72.04}{\pm}0.20$ |  |  |
| GraphSAGE           | $78.70 \pm 0.36$                   | $\textbf{77.68} \pm \textbf{0.20}$ | $71.49 {\pm} 0.27$        |  |  |
| +FLAG               | $\textbf{79.36}{\pm}\textbf{0.57}$ | $76.57 {\pm} 0.75$                 | $\textbf{72.19}{\pm}0.21$ |  |  |
| GAT                 | $79.45 {\pm} 0.59$                 | -                                  | $73.65 {\pm} 0.11$        |  |  |
| +FLAG               | $\textbf{81.76}{\pm}\textbf{0.45}$ | -                                  | $\textbf{73.71}{\pm}0.13$ |  |  |
| DeeperGCN           | $80.98 \pm 0.20$                   | $85.80 {\pm} 0.17$                 | $71.92 \pm 0.16$          |  |  |
| +FLAG               | $\textbf{81.93}{\pm}\textbf{0.31}$ | $\textbf{85.96}{\pm}\textbf{0.27}$ | $\textbf{72.14}{\pm}0.19$ |  |  |



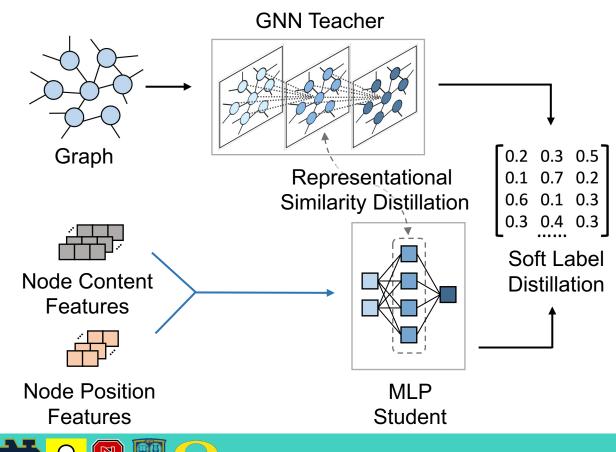
Can we leverage small data perturbations to improve robustness? Yes, adversarial training

A use case: training an MLP on graphs Reason: to avoid the computation-intensive message passing mechanism



Can we leverage small data perturbations to improve robustness? Yes, adversarial training

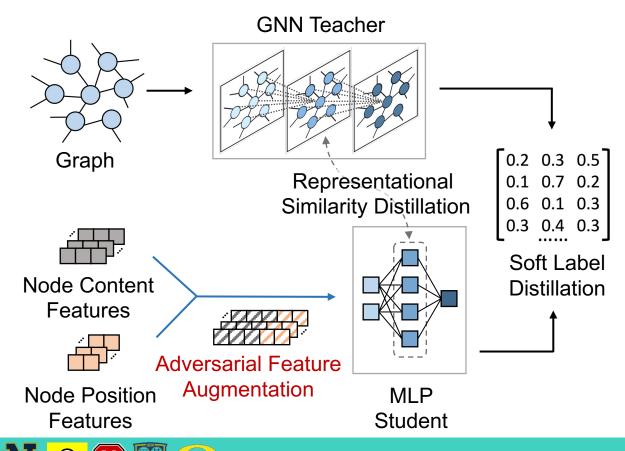
A use case: training an MLP on graphs



The problem of training an MLP on graphs: sensitive to features

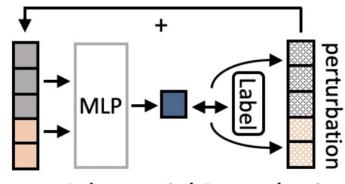
Can we leverage small data perturbations to improve robustness? Yes, adversarial training

A use case: training an MLP on graphs



The problem of training an MLP on graphs: sensitive to features

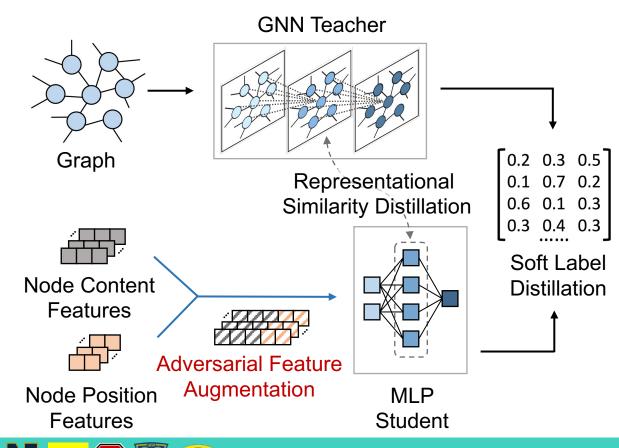
#### Overcome this problem with adversarial training



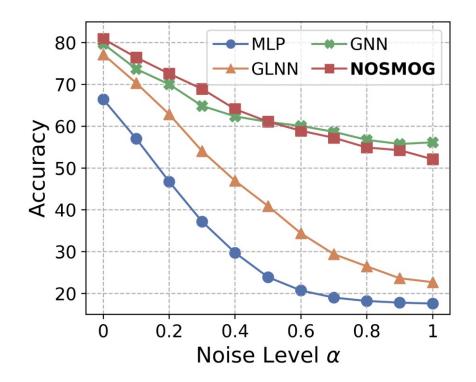
Learn Adversarial Perturbation

Can we leverage small data perturbations to improve robustness? Yes, adversarial training

A use case: training an MLP on graphs



#### NOSMOG is as robust as GNNs

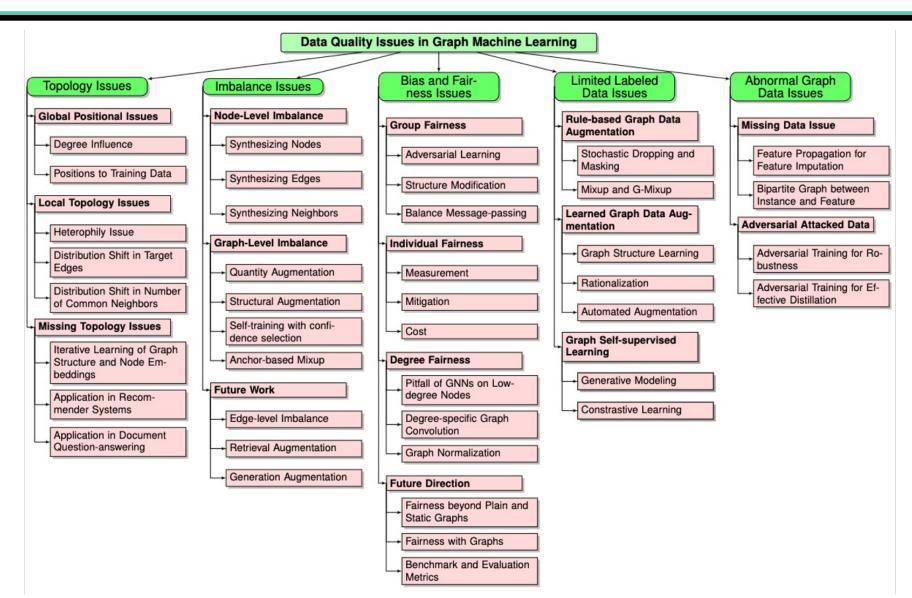


- Introduction and Background
- Topology Issues
- Imbalance Issues
- Short Break

- Bias Issue
- Limited Labeled Data Issues
- Abnormal Graph Data Issues
- Summary

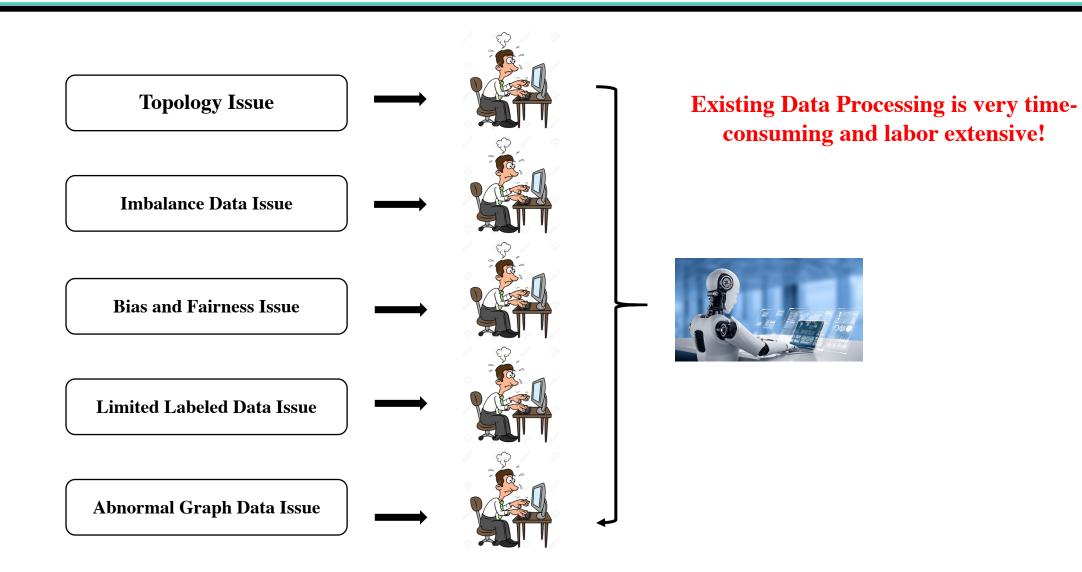


### Summary





### **Future Directions**





### Summary

**Intelligent Data Processing Tool** 

