Improving Fairness in Graph Neural Networks via Mitigating Sensitive Attribute Leakage

Network and Data Science Lab, Vanderbilt University
 University of Virginia
 Case Western Reserve University

Background – Group Fairness

$\Delta_{\rm sp} = |P(\hat{y} = 1|s = 0) - P(\hat{y} = 1|s = 1)|$

s: sensitive attribute

Discriminative and unfair decision!

Background – Sensitive leakage

Height Coding Weight BQ

Predictive Model

Height Coding Weight BQ

Background – Correlation variation

Slide 4 • • my.vanderbilt.ed<u>u/nds</u>

Motivation – Correlation variation

Mask feature channels with higher correlation to the sensitive attributes

What we desire

Graph Domain Challenge

Solution: FairVGNN

Slide 6 my.vanderbilt.edu/nds

NDS

FairVGNN – Datasets and Baselines

Table 2. Dasie ualaset statistics.									
Dataset	German	Credit	Bail						
#Nodes	1000	30,000	18,876						
#Edges	22,242	1,436,858	321,308						
#Features	27	13	18						
Sens.	Gender	Age	Race						
Label	Good/bad Credit	Default/no default Payment	Bail/no bail						

Table 2: Basic dataset statistics.

Augmentation-based: NIFTY, EDITS

Adversarial-based: FairGNN

FairVGNN – Experiments

	Encoder	Method	German]
	Liteouei		AUC (↑)	F1 (†)	ACC (†)	Δ_{sp} (\downarrow)	Δ_{eo} (\downarrow)	
		Vanilla	74.11±0.37	82.46 ± 0.89	73.44±1.09	35.17 ± 7.27	25.17 ± 5.89	
\frown		NIFTY	68.78±2.69	81.40 ± 0.54	69.92 ± 1.14	5.73 ± 5.25	5.08 ± 4.29	
	GCN	EDITS	69.41±2.33	81.55 ± 0.59	71.60 ± 0.89	4.05 ± 4.48	3.89 ± 4.23	
		FairGNN	67.35 ± 2.13	82.01 ± 0.26	69.68 ± 0.30	3.49 ± 2.15	3.40 ± 2.15	
		FairVGNN	72 41+2 10	82 14+0 42	70 16+0 86	1 71+1 68	0 88+0 58	ļ
								· ·
	E l	Mathad			Credit			
	Encoder	Method	AUC (†)	F1 (↑)	Credit ACC (↑)	$\Delta_{sp} (\downarrow)$	∆ _{eo} (↓)	
	Encoder	Method Vanilla	AUC (†) 74.36±0.21	F1 (↑) 82.28±0.64	Credit ACC (↑) 74.02±0.73	∆ _{sp} (↓) 14.48±2.44	$\Delta_{eo} (\downarrow)$ 12.35±2.86	
	Encoder	Method Vanilla NIFTY	AUC (†) 74.36±0.21 70.90±0.24	F1 (↑) 82.28±0.64 84.05±0.82	Credit ACC (↑) 74.02±0.73 75.59±0.66	Δ_{sp} (\downarrow) 14.48±2.44 7.09±4.62	$\Delta_{eo} (\downarrow)$ 12.35±2.86 6.22±3.26	
	Encoder GIN	Method Vanilla NIFTY EDITS	AUC (†) 74.36±0.21 70.90±0.24 72.35±1.11	F1 (↑) 82.28±0.64 84.05±0.82 82.47±0.85	Credit ACC (↑) 74.02±0.73 75.59±0.66 74.07±0.98	Δ_{sp} (\downarrow) 14.48±2.44 7.09±4.62 14.11±14.45	Δ_{eo} (\downarrow) 12.35±2.86 6.22±3.26 15.40±15.76	
	Encoder GIN	Method Vanilla NIFTY EDITS FairGNN	AUC (†) 74.36±0.21 70.90±0.24 72.35±1.11 68.66±4.48	F1 (↑) 82.28±0.64 84.05±0.82 82.47±0.85 79.47±5.29	Credit ACC (↑) 74.02±0.73 75.59±0.66 74.07±0.98 70.33±5.50	Δ_{sp} (\downarrow) 14.48±2.44 7.09±4.62 14.11±14.45 4.67±3.06	Δ_{eo} (\downarrow) 12.35±2.86 6.22±3.26 15.40±15.76 3.94±1.49	

(1) Compared with vanilla GNN model, the bias-mitigating model can achieve lower bias

(2) Compared with other baselines, FairVGNN can achieve even better trade-off between fairness and utility performance

FairVGNN – Adversarial training

(1) Removing either the generator or the discriminator would lower the fairness

(2) Removing the discriminator causes the highest bias

FairVGNN – Adaptive weight clamping

(a) German

(b) Credit

Contributions

Novel problem

Solution: FairVGNN

New Finding: bias and homophily

$$|\boldsymbol{\mu}||_2 = ||(2\chi - 1)\mathbf{W}^{f,1}\Delta\boldsymbol{\mu}||_2 \le (2\chi - 1) \left(\sum_{i=1}^{d_1} (\sum_{r \in \mathcal{S}} \epsilon \mathbf{p}_r \Delta\boldsymbol{\mu}_r + \sum_{k \in \mathcal{NS}} \epsilon \mathbf{p}_k \Delta\boldsymbol{\mu}_k)^2\right)^{0.5}$$

Concurrent and Future work

Network channel homophily, propagation and fairness

Acknowledgement

Dong

Yuying Zhao

Chen

I Jundong Li

Tyler Derr

https://nds-vu.github.io/

Association for Computing Machinery

More about me https://yuwvandy.github.io/

