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What is drug pair scoring?

▶ The drug pair scoring task
▶ Motivation

▶ Timelines
▶ Material costs (assays)
▶ Labour costs
▶ Tractability

▶ Application domains - tasks
▶ Interaction
▶ Polypharmacy side effect
▶ Synergy

▶ Multi-objective optimization

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How do we represent drugs in drug pair scoring?

Let G = (V,R, E) be a heterogeneous biological graph with drug entities D ⊂ V.

1. Molecular - low level encoders:

hd = fΘD
(Md)

2. Systems biology based - high level encoders:

hd = AGGREGATE({Θu,∀u ∈ N (d)})

3. Hierarchical encoders (structure and systems view):

hd = AGGREGATE({fΘD
(Mu), ∀u ∈ N (d)})

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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Why molecule level models?

▶ Induction
▶ Attribution (explanation)
▶ Pre-training
▶ Transfer learning
▶ Structural ablation

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How do we represent biological contexts and score pairs?

Given C a set of biological contexts the representation of c ∈ C is:

hc = fΘC
(xc).

We score the pair d , d ′ ∈ D in the context c ∈ C with:

ŷd ,d
′,c = fΘH

(hd ,hd ′
,hc).

The loss for the pair in the context is defined as:

ℓd ,d ′,c = ℓ(ŷd ,d
′,c , yd ,d

′,c).

The parametric functions fΘD
(·), fΘC

(·), and fΘH
(·) can be trained jointly by minimizing

the cost accumulated from data point level losses.

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How do we conceptualize these models?

Data: XD - Drug feature set.
XC - Context feature set.
B - Labeled drug pair - context batch.

Result: L - The cost for the batch.
1 L ← 0
2 for (d , d ′, c , yd,d′,c) ∈ B do
3 hd ← fΘD

(xd ,Gd ,Xd
N ,X

d
E ) // Compute drug representation for d ∈ D.

4 hd′
← fΘD

(xd
′
,Gd′

,Xd′

N ,Xd′

E ) // Compute drug representation for d ′ ∈ D.
5 hc ← fΘC

(xc) // Compute context representation for c ∈ C.
6 ŷd,d′,c ← fΘH

(hd ,hd′
,hc) // Score based on the representations.

7 L ← L+ ℓ(yd,d′,c , ŷd,d′,c) // Add loss to the accumulated cost.
8 end

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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A System for Repurposing
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What is ChemicalX?

https://github.com/AstraZeneca/chemicalx/

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How did you engineer it?

▶ Documentation
▶ Unit and integration tests with coverage reports
▶ Tutorials
▶ Example datasets
▶ Continuous integration
▶ Linting, type hinting and docstrings

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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Library Year Backend Drug
Domain

Pair
Scoring

PyG [7] 2018 PT ✘ ✘

DGL [24] 2019 PT/TF/MX ✘ ✘

StellarGraph [5] 2019 TF ✘ ✘

DeepChem [19] 2019 TF ✔ ✘

CHChem [16] 2019 CH ✔ ✘

Jraph [8] 2020 JAX ✘ ✘

Spektral [9] 2020 TF ✘ ✘

DIG [15] 2021 PT ✘ ✘

TorchDrug [28] 2021 PT ✔ ✘

CogDL [3] 2021 PT ✘ ✘

TFG [10] 2021 TF ✘ ✘

DGL-LS [13] 2021 PT ✔ ✘

Our Work 2022 PT ✔ ✔

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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What is included in ChemicalX?

Model Year Domain Encoder
DeepDDI [20] 2018 Interaction Feedforward

DeepSynergy [18] 2018 Synergy Feedforward

MHCADDI [6] 2019 Polypharmacy GAT

MR-GNN [25] 2019 Interaction GCN

CASTER [12] 2019 Interaction Feedforward

SSI-DDI [17] 2020 Interaction GAT

EPGCN-DS [21] 2020 Interaction GCN

DeepDrug [2] 2020 Interaction GCN

GCN-BMP [4] 2020 Interaction GCN

DeepDDS [23] 2021 Synergy GCN or GAT

MatchMaker [1] 2021 Synergy Feedforward

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How do we load the dataset?

1 from chemicalx.data import DrugCombDB, BatchGenerator
2

3 loader = DrugCombDB()
4

5 context_set = loader.get_context_features()
6 drug_set = loader.get_drug_features()
7 triples = loader.get_labeled_triples()
8

9 generator = BatchGenerator(batch_size=1024,
10 context_features=True,
11 drug_features=True,
12 drug_molecules=False,
13 context_feature_set=context_set,
14 drug_feature_set=drug_set,
15 labeled_triples=triples)

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How do we train a model?

1 import torch
2 from chemicalx.models import DeepSynergy
3

4 model = DeepSynergy(context_channels=112,
5 drug_channels=256)
6

7 optimizer = torch.optim.Adam(model.parameters())
8 model.train()
9 loss = torch.nn.BCELoss()

10

11 for epoch in range(200):
12 for batch in generator:
13 optimizer.zero_grad()
14 prediction = model(batch.context_features,
15 batch.drug_features_left,
16 batch.drug_features_right)
17 loss_value = loss(prediction, batch.labels)
18 loss_value.backward()
19 optimizer.step()

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How do we score a dataset with the model?

1 import pandas as pd
2 from chemicalx.data import HAEM
3

4 model.eval()
5

6 loader = HAEM()
7

8 generator.labeled_triples = loader.get_labeled_triples()
9

10 predictions = []
11 for batch in generator:
12 prediction = model(batch.context_features,
13 batch.drug_features_left,
14 batch.drug_features_right)
15 prediction = prediction.detach().cpu().numpy()
16 identifiers = batch.identifiers
17 identifiers["prediction"] = prediction
18 predictions.append(identifiers)
19 predictions = pd.concat(predictions)

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How can you BYOD (Bring Your Own Data)?

Training and scoring for specific pairs would only need these things:
▶ Drug pairs with biological/chemical contexts and labels.
▶ Context set with context identifier keys and context feature vector values.
▶ Drug set with SMILES strings and molecule level features.

Checkout the following link for an example:

https://github.com/AstraZeneca/chemicalx/tree/main/dataset/drugbankddi

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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Experimental Results
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What are the datasets integrated?

Table 1: Datasets available in ChemicalX in the domain of the pair scoring task and the number
of drugs (|D|), administration contexts (|C|), and labeled triples (|Y|).

Dataset Task |D| |C| |Y|
TWOSIDES [22] Polypharmacy 644 10 499,582

Drugbank DDI [20] Interaction 1,706 86 383,496
DrugComb [26, 27] Synergy 4,146 288 659,333
DrugCombDB [14] Synergy 2,956 112 191,391
OncolyPharm [11] Synergy 38 39 23,052

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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How about predictive performance?

Table 2: The predictive performance of (some) models in ChemicalX on TWOSIDES [22]. Feed-
forward encoder based architectures are noted with a ■.

AUROC AUPR F1

DeepDDI [20] ■ .929± .001 .907± .001 .848± .009
DeepSynergy [18] ■ .940± .001 .919± .001 .887± .001
MR-GNN [25] .937± .002 .917± .001 .875± .002
SSI-DDI [17] .823± .002 .800± .003 .756± .001
EPGCN-DS [21] .855± .003 .834± .002 .785± .004
DeepDrug [2] ■ .923± .004 .904± .002 .857± .002
GCN-BMP [4] .709± .003 .694± .002 .592± .003
DeepDDS [23] .915± .002 .898± .002 .839± .003
MatchMaker [1] ■ .912± .002 .892± .001 .849± .001

ChemicalX: A Deep Learning Library for Drug Pair Scoring



Drug Pair Scoring A System for Repurposing Experimental Results Conclusions References

How about training time?
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Figure 1: The average runtime of doing an epoch on DrugBankDDI [11].
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How about inference time?
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Figure 2: The average runtime of doing a scoring pass for all combinations in DrugBankDDI [11].
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Conclusions
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What are the main takeaways?

Having impact!
▶ ChemicalX is used for targeting haematological malignancies.
▶ Early oncology scientists in AZ are using ChemicalX self-service.

Having fun!
▶ Internal and external collaborations.
▶ Skills elevated for people in AZ who are not core machine learning.

What could be improved?
▶ Splits that take scaffolds into account.
▶ Geometric graph encoders.
▶ Scaling with locality sensitive hashing.

ChemicalX: A Deep Learning Library for Drug Pair Scoring
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Thank you for the kind attention!
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