# Tree Decomposed Graph Neural Network

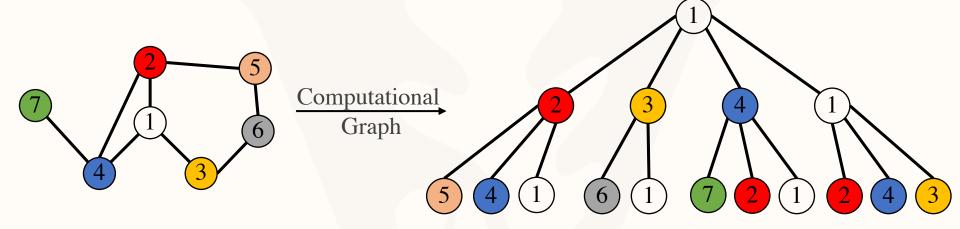






Network and Data Science Lab Department of Computer Science

Vanderbilt University

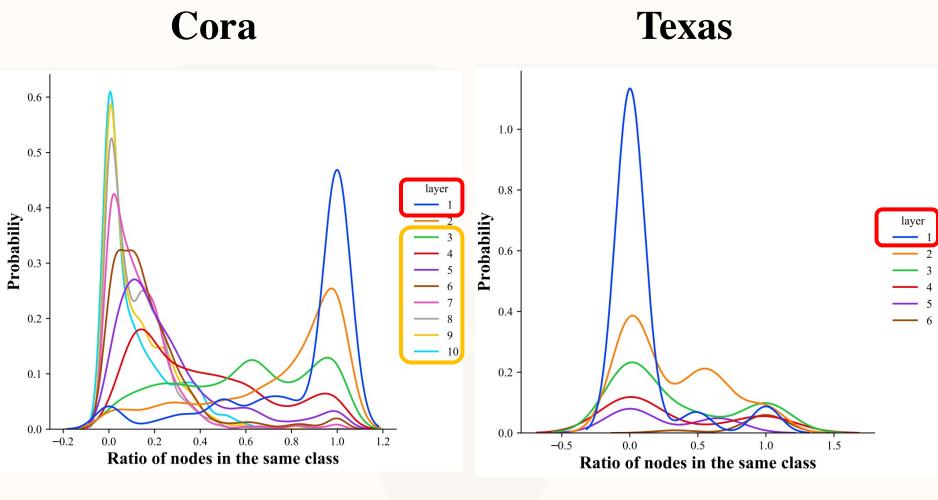

yu.wang.1@Vanderbilt.edu https://yuwvandy.github.io/





## **Motivation – Tree Decomposition**

## **Iterative propagation framework**

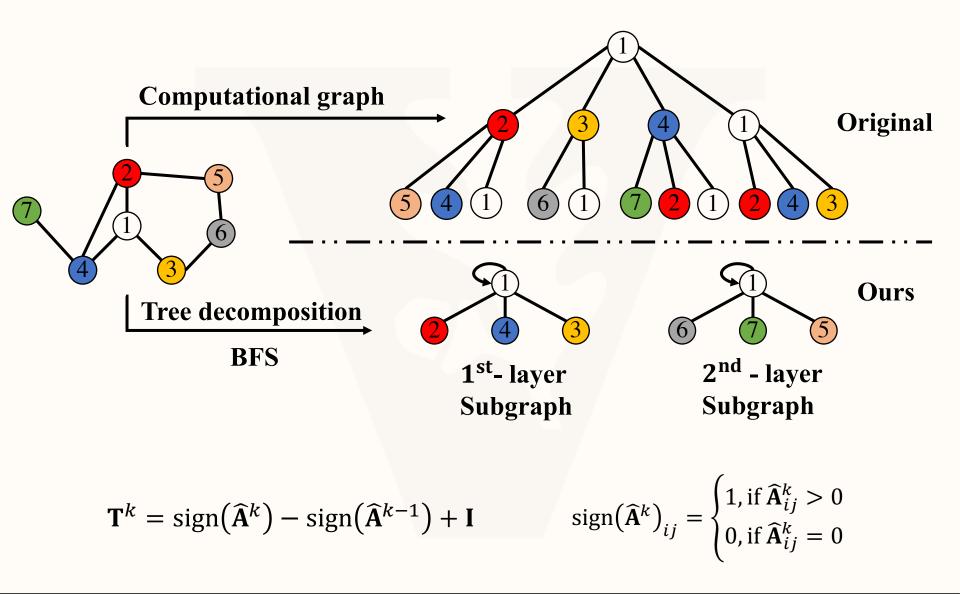



 $\widehat{\mathbf{h}}_{i}^{l} = \text{AGGREGATION}^{l}(\mathbf{h}_{i}^{l-1}, \{\mathbf{h}_{j}^{l-1} | j \in \mathcal{N}_{i}\}), \qquad 5 \longrightarrow 2 \longrightarrow 1$ 

Feature smoothing between different layers!



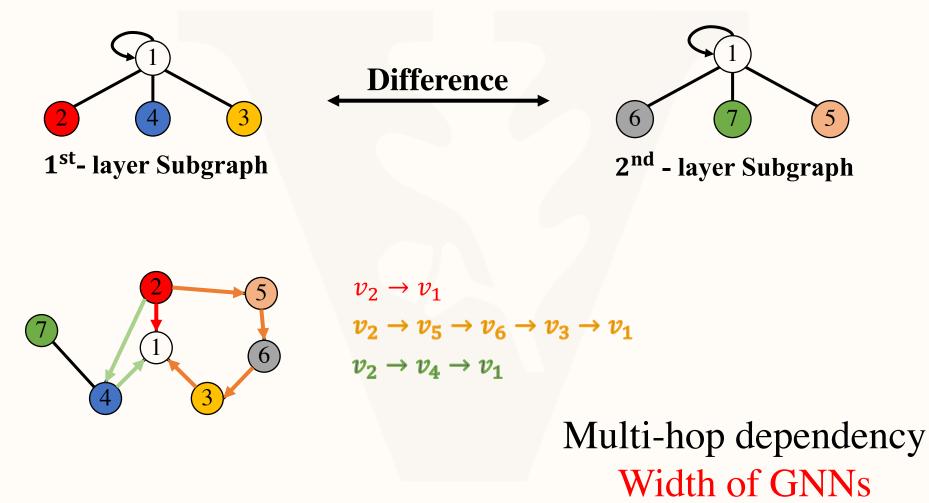
## **Motivation – Tree Decomposition**




Homophily

Heterophily

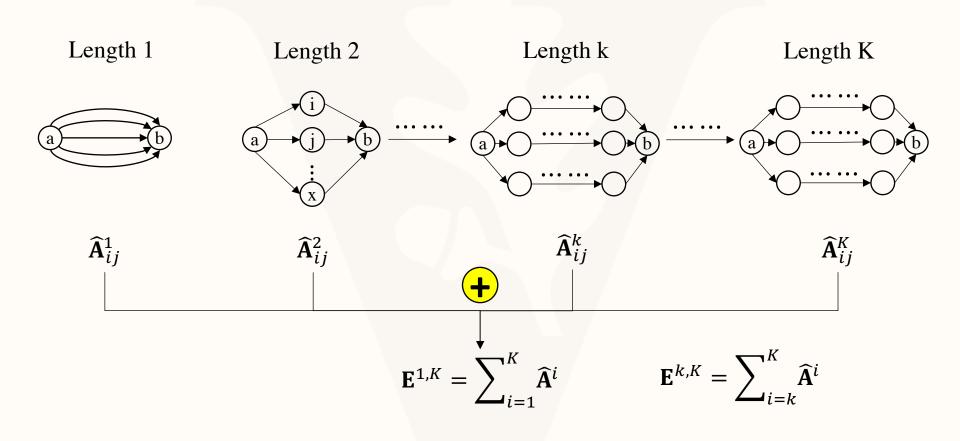



## **Method – Tree Decomposition**



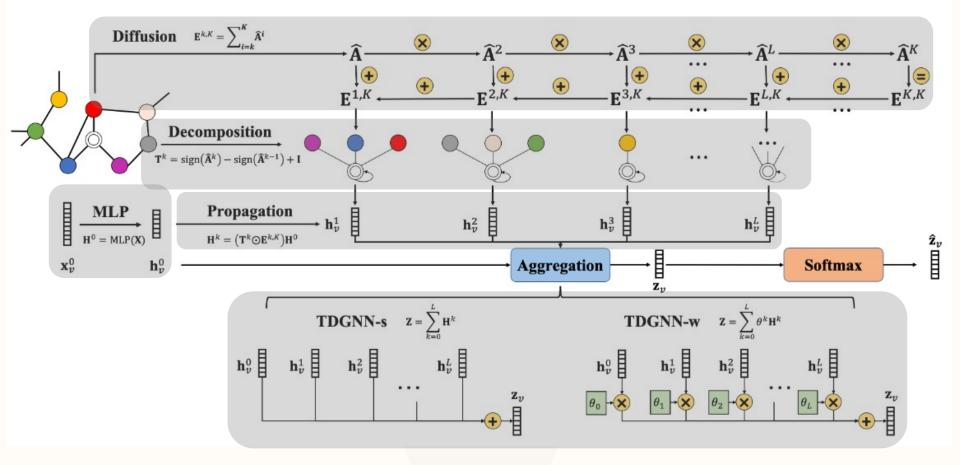


## **Motivation – Multi-hop dependency**


### What's the weight for these edges?






## **Method – Multi-hop dependency**

## **Graph Diffusion**





## **Framework - TDGNN**





# Experiment

| Networks          |           | Nodes | Edges | Features | Classes | Train/Val/Test | Туре                        |
|-------------------|-----------|-------|-------|----------|---------|----------------|-----------------------------|
| Homophily         | Cora      | 2708  | 5429  | 1433     | 7       | 140/500/1000   | Citation network            |
|                   | Citeseer  | 3327  | 4732  | 3703     | 6       | 120/500/1000   | Citation network            |
|                   | Pubmed    | 19717 | 44338 | 500      | 3       | 60/500/1000    | Citation network            |
| Non-<br>homophily | Cornell   | 183   | 295   | 1703     | 5       | 48%/32%/20%    | Webpage network             |
|                   | Texas     | 183   | 309   | 1703     | 5       | 48%/32%/20%    | Webpage network             |
|                   | Wisconsin | 251   | 499   | 1703     | 5       | 48%/32%/20%    | Webpage network             |
|                   | Actor     | 7600  | 33544 | 931      | 5       | 48%/32%/20%    | Actor co-occurrence network |

#### Table 1: Statistics of datasets.

### Semi-supervised setting

- (1) 20 training nodes each class
- (2) Fixed splitting and random splitting

### **Full-supervised setting**

- (1) 48% training nodes each class
- (2) Fixed splitting



# **Experiment - Semi-supervised classification**

#### Table 2: Summary of semi-supervised classification accuracy (%) ± stdev over Cora, Citeseer, and Pubmed datasets.

| Method  | Co                      | ra                     | Cite                   | eseer                   | Pub                     | Ares Daula        |           |
|---------|-------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------|-----------|
|         | Fixed                   | Random                 | Fixed                  | Random                  | Fixed                   | Random            | Avg. Rank |
| GCN     | 81.50±0.79 (0-2)        | 79.91±1.64 (0-2)       | 71.42±0.48 (0-2)       | 68.78±2.01 (0-2)        | 79.12±0.46 (0-2)        | 77.84±2.36 (0-2)  | 7.17      |
| GAT     | 83.10±0.40 (0-2)        | $80.80 \pm 1.60 (0-2)$ | $70.80 \pm 0.50$ (0-2) | 68.90±1.70 (0-2)        | 79.10±0.40 (0-2)        | 77.80±2.10 (0-2)  | 7.00      |
| SGC     | 82.63±0.01 (0-2)        | 80.18±1.57 (0-2)       | $72.10 \pm 0.14$ (0-2) | 69.33±1.90 (0-2)        | 79.12±0.10 (0-2)        | 76.74±2.84 (0-2)  | 6.83      |
| APPNP   | $83.34 \pm 0.56$ (0-10) | 82.26±1.39 (0-10)      | 72.22±0.50 (0-10)      | $70.53 \pm 1.57$ (0-10) | $80.14 \pm 0.24$ (0-10) | 79.54±2.23 (0-10) | 3.83      |
| DAGNN   | 84.88±0.49 (0-10)       | 83.47±1.18 (0-10)      | 73.39±0.07 (0-9)       | 70.87±1.44 (0-10)       | 80.51±0.42 (0-20        | 79.52±2.19 (0-20) | 2.33      |
| GCNII*  | 85.57±0.45 (0-64)       | 82.58±1.68 (0-64)      | 73.24±0.61 (0-32)      | 70.04±1.72 (0-10)       | 80.00±0.48 (0-16)       | 79.03±1.68 (0-16) | 3.83      |
| TDGNN-s | 85.35±0.4 (0-4)         | 83.84±1.45 (0-6)       | 73.78±0. 50 (0-8)      | 71.27±1. ′1 (0-8)       | 80.20±0.33 (0-5)        | 80.01±1.95 (0-5)  | 1.33      |
| TDGNN-w | $84.42 \pm 0.5$ (0-4)   | 83.43±1.35 (0-6)       | 72.14±0. 9 (0-6)       | 70.32±1. 7 (0-6)        | 80.12±0. 14 (0-5)       | 79.77±2.04 (0-5)  | 3.67      |
|         |                         |                        |                        |                         |                         |                   |           |

### TDGNN-s, TDGNN-w rank 1st and 3rd

TDGNN-s, TDGNN-w utilize less layers of neighborhoods

Random setting – more robustness to data distribution

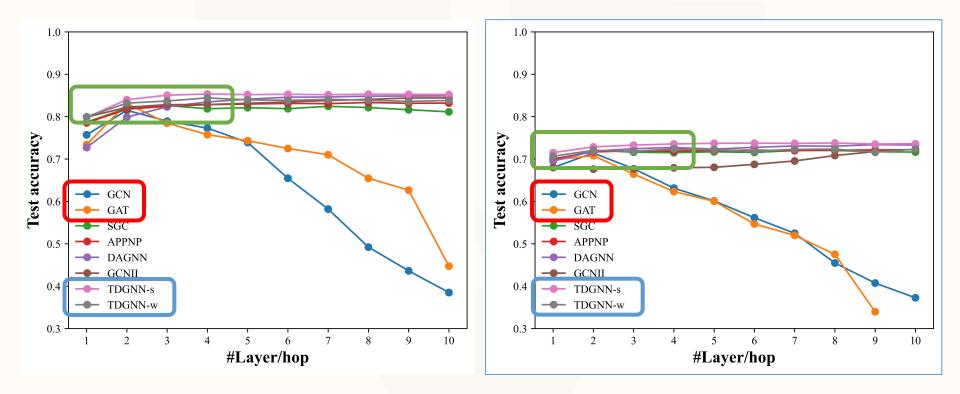


# **Experiment - Full-supervised classification**

#### Table 3: Summary of full-supervised classification accuracy (%) ± stdev over 8 datasets

| Method    | Cora              | Cite.                   | Pub.              | Corn.                      | Tex.                   | Wisc.               | Act.                   | Avg. Rank |
|-----------|-------------------|-------------------------|-------------------|----------------------------|------------------------|---------------------|------------------------|-----------|
| MLP       | 75.78±1.84 (0)    | 73.81± 1.74 (0)         | 86.90±0.37 (0)    | 80.97±6.33 (0)             | 81.32± 4.19 (0)        | 85.38±3.95 (0)      | 36.60±1.25 (0)         | 5.57      |
| GCN       | 86.97±1.32 (0-2)  | 76.37±1.47 (0-2)        | 88.19±0.48 (0-2)  | 58.57±3.57 (0-2)           | 58.68±4.64 (0-2)       | 53.14±6.25 (0-2)    | $28.65 \pm 1.38$ (0-2) | 8.14      |
| GAT       | 87.30±1.01 (0-2)  | 75.55±1.32 (0-2)        | 85.33±0.48 (0-2)  | 61.89±5.05 (0-2)           | 58.38±6.63 (0-2)       | 55.29±4.09 (0-2)    | 28.45±0.89 (0-2)       | 8.00      |
| SGC       | 87.07±1.20 (0-2)  | 76.01±1.78 (0-2)        | 85.11±0.52 (0-2)  | 58.68±3.75 (0-2)           | 60.43±5.11 (0-2)       | 53.49±5.13 (0-2)    | 27.46±1.46 (0-2)       | 8.57      |
| Geom-GCN* | 85.35±1.57 (0-2)  | 78.02±1.15 (0-2)        | 89.95±0.47 (N/A)  | 60.54±3.67 (0-2)           | 66.76±2.72 (N/A)       | 64.51±3.66 (N/A)    | 31.63±1.15 (N/A)       | 5.86      |
| APPNP     | 86.76±1.74 (0-10) | $77.08 \pm 1.56 (0-10)$ | 88.45±0.42 (0-10) | 74.59±5.11 (0-10)          | 74.30±4.74 (0-10)      | 81.10±2.93 (0-10)   | 34.36±1.09 (0-10)      | 5.43      |
| DAGNN     | 87.26±1.42 (0-10) | 76.47±1.54 (0-10)       | 87.49±0.63 (0-20) | 80.97±6.33 (0)             | 81.32±4.19 (0)         | 85.38±3.95 (0)      | 36.60±1.25 (0)         | 4.71      |
| GCNII*    | 88.27±1.31 (0-64) | 77.06±1.67 (0-64)       | 90.26±0.41 (0-64) | 76.70±5.40 (0-16)          | 77.08±5.84 (0-32)      | 80.94±4.94 (0-16)   | 35.18±1.30 (0-64)      | 3.71      |
| TDGNN-s   | 88.26±1.32 (0-4)  | 76.64±1.54 (0-8)        | 89.13±0.39 (0-1)  | 80.97±6.33 (0)             | 82.95±4.59 (0, 4-5)    | 85.47±3.88 (0, 4-5) | 36.70±1.28 (0, 3-4)    | 2.86      |
| TDGNN-w   | 88.01±1.32 (0-5)  | 76.58±1.40 (0-2)        | 89.22±0.41 (0-1)  | $82.92{\pm}6.61(0, 2{-}6)$ | $83.00{\pm}4.50~(0,2)$ | 85.57±3.78 (0, 3-5) | 37.11±0.96 (0, 3-4)    | 2.14      |

\* We reuse the results reported in [33] for Geom-GCN. 'N/A' indicate the corresponding layers are not reported in the paper.

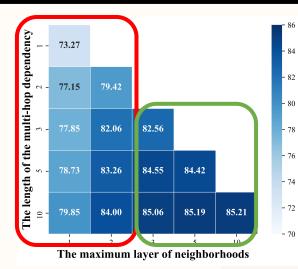

#### TDGNN-w, TDGNN-s rank 1st and 2nd

TDGNN-s, TDGNN-w leverage different layers of neighborhoods



## **Experiment – Further Probe**

## Alleviate over-smoothing

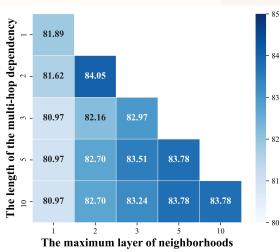



Cora

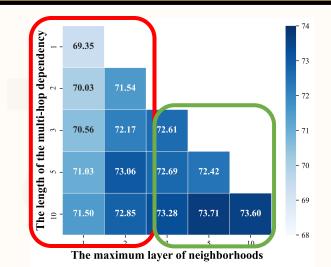
Citeseer



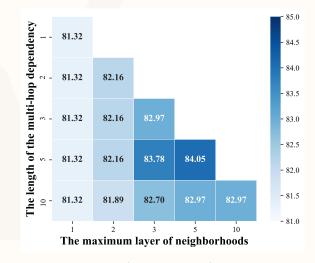
## **Experiment – Further Probe**




#### Cora


85

- 84


- 82

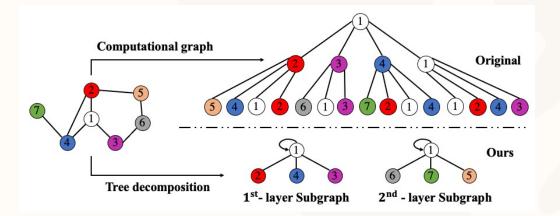




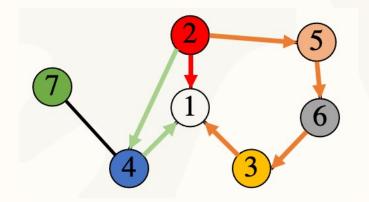


Citeseer




Wisconsin




Slide 12 ×/ my.vanderbilt.edu/nds

## Conclusion

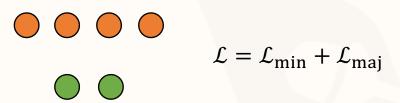
Tree decomposition to alleviate over-smoothing between different layers



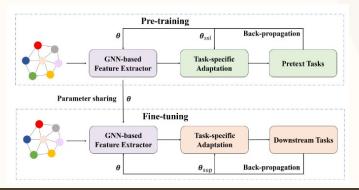
Graph diffusion to incorporate multi-hop dependencies

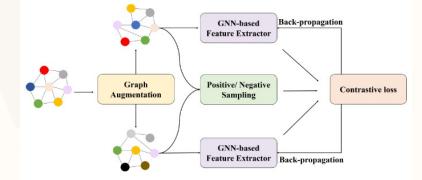



Width is also important compared with depth!




## **Future Directions**


### Layer adaptive -> node adaptive




### **Node/Graph imbalance classification**



### **Incorporate self-supervised learning with deeper GNNs**







# Acknowledgement

Project webpage: https://github.com/YuWVandy/TDGNN





Please see my homepage for more details!

### https://yuwvandy.github.io/

Thank you! Any question?

