

Fairness and Explainability: Bridging the Gap Towards Fair Model Explanations

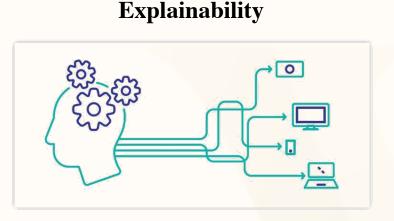
Yuying Zhao

Yu Wang

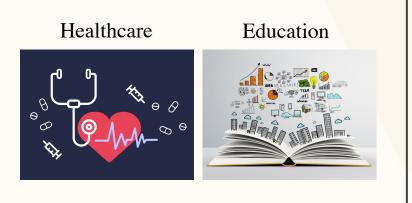
yuying.zhao@vanderbilt.edu https://yuyingzhao.github.io/

Network and Data Science Lab

Background: Bias and Fairness in ML



[1] Obermeyer, Ziad, et al. "Dissecting racial bias in an algorithm used to manage the health of populations." Science. 2019.


- [2] Anderson, Henry, et al. "Assessing the Fairness of Graduation Predictions." EDM. 2019.
- [3] Zhang, Yukun, et al. "Fairness assessment for artificial intelligence in financial industry." NeurIPS. 2019.

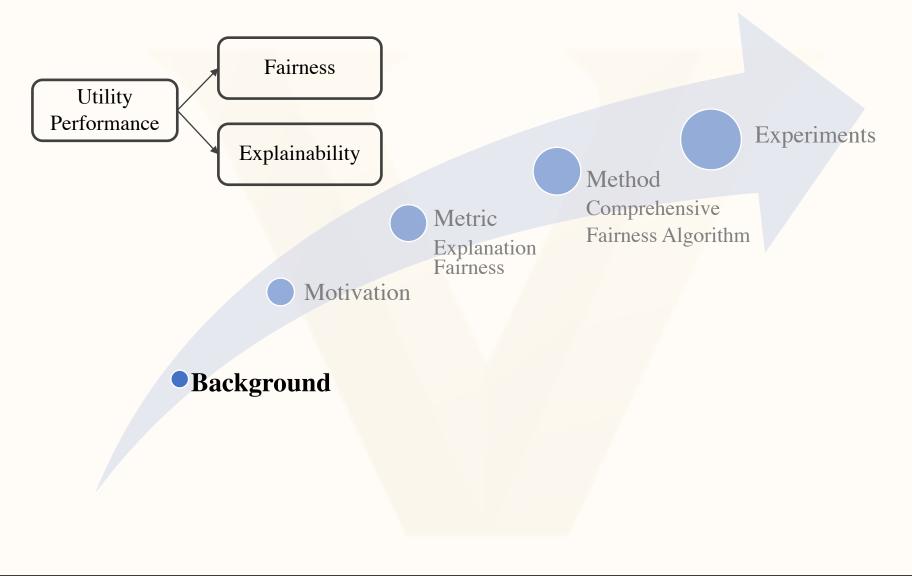
Background: Model Explainability

- Why should I trust the model?
- Why did a model make a certain decision?

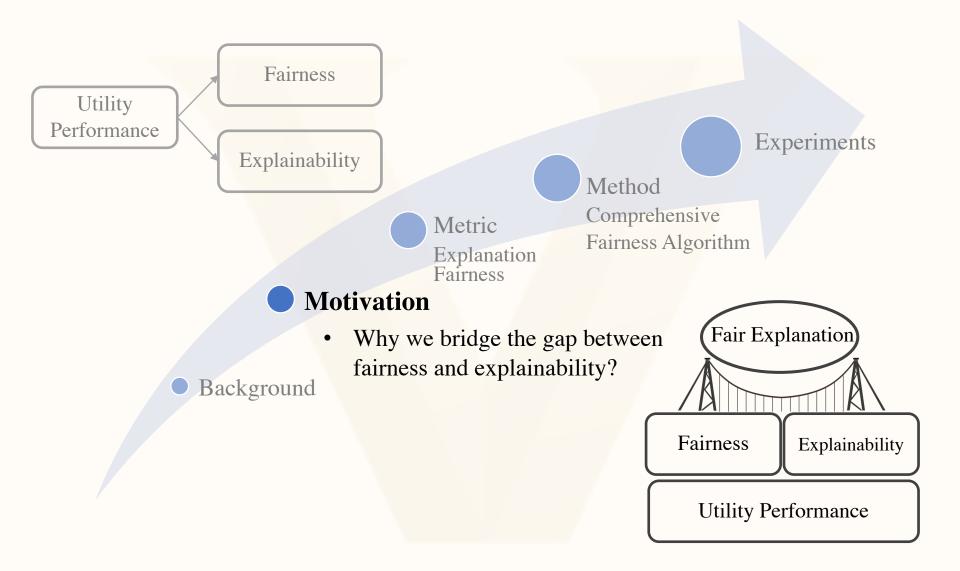
Business perspective:

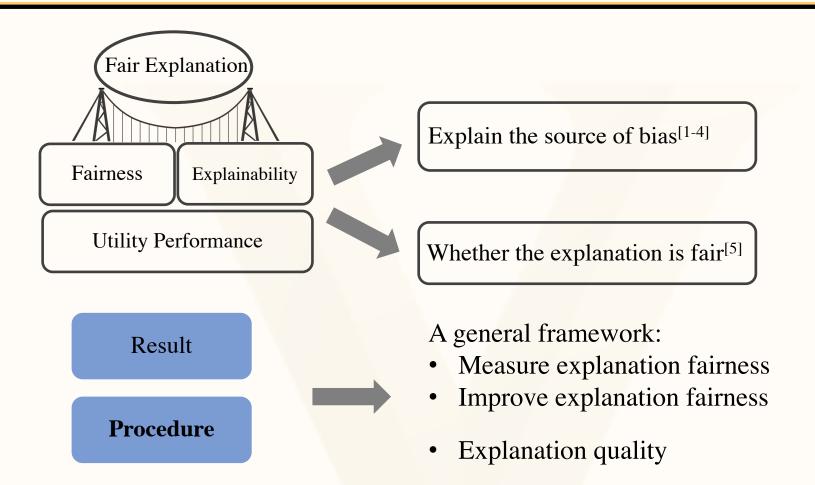
- Trust before deployment
- Find justification

Model perspective:


- Debug model (mis)predictions
- Improve/verify ML models

Regulatory perspective:


• GDPR: Article 22 empowers individuals with the right to demand an explanation of how an automated system made a decision that affects them.



Existing Work

[1] Lundberg, S. M. "Explaining Quantitative Measures of Fairness." Fair & Responsible AI Workshop. 2020.

- [2] Begley, Tom, et al. "Explainability for fair machine learning". arXiv. 2020.
- [3] Chiappa, S. "Path-specific counterfactual fairness." AAAI. 2019.

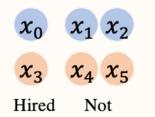
[4] Pan, Weishen, et al. "Explaining algorithmic fairness through fairness-aware causal path decomposition". KDD. 2021.

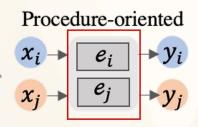
[5] Fu, Zuohui, et al. "Fairness-aware explainable recommendation over knowledge graphs." SIGIR. 2020.

NDS

Motivation: Fairness and Explainability

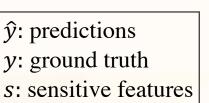
Motivation:

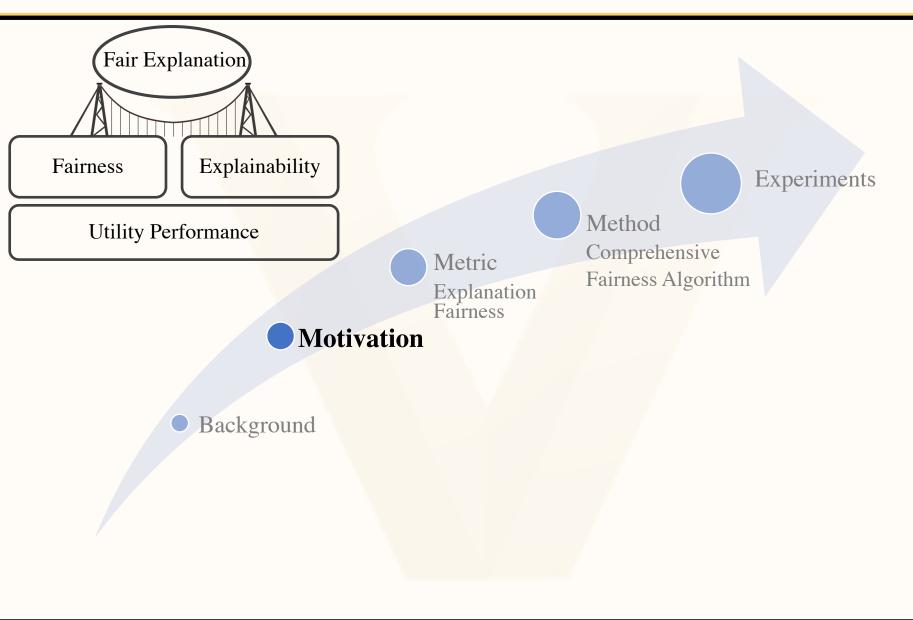

most fairness metrics: result-oriented hide the potential bias during the procedure


Statistical Parity: $\Delta_{SP} = |P(\hat{y} = 1|s = 0) - P(\hat{y} = 1|s = 1)|$

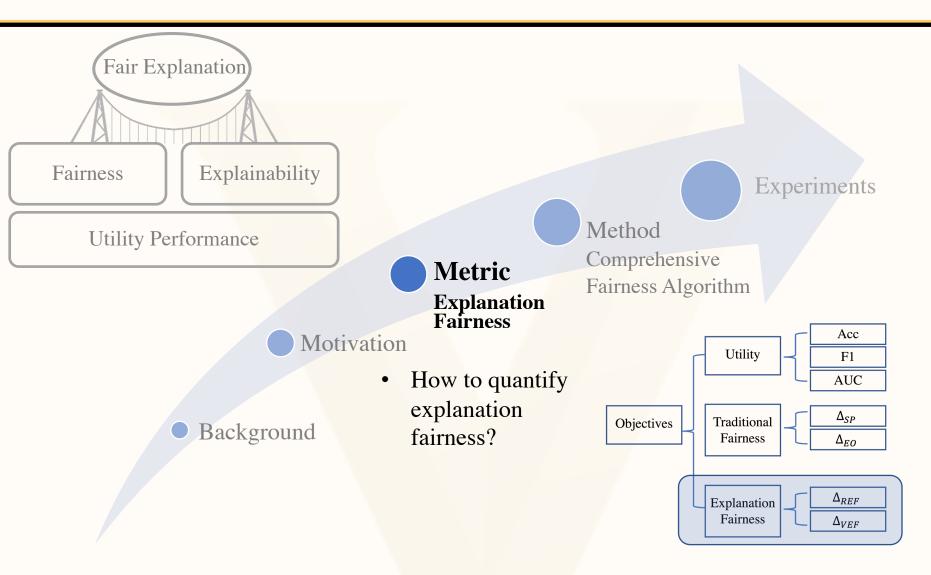
Result-oriented

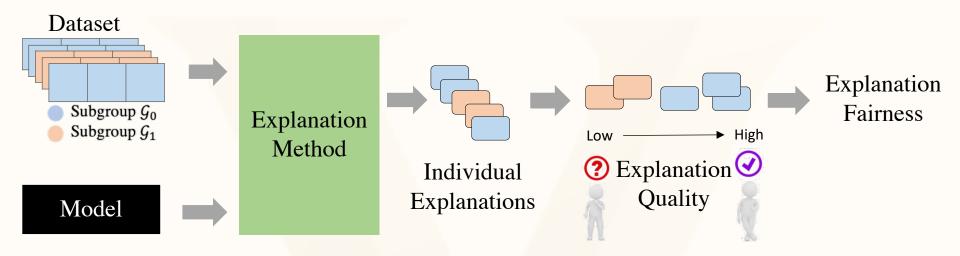
Model




Unfair Explanations x_0 0.8 x_1 0.8 x_2 0.6 Higher EQ x_3 0.7 x_4 0.2 x_5 0.7 Lower EQ Explanation Quality (EQ) Unfairness: Better explanation for one group than the other

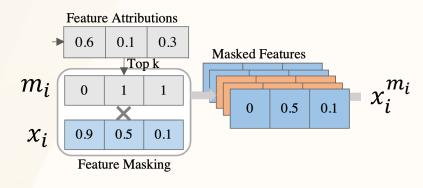
Example: Job hiring Well-explained vs Ambiguous explanation





Metric: High-level Idea of Explanation Fairness

Compare explanation quality from two subgroups



What makes a "good" explanation?

Fidelity:

$$\Delta_{F_i} = P(\widehat{y_i} = y_i | x = x_i) - P(\widehat{y_i} = y_i | x = x_i^{m_i})$$

How well does the explanation approximate the prediction of the black-box model?

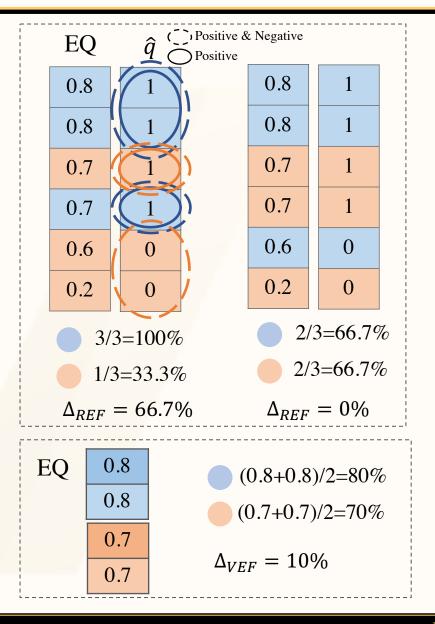
Metric: Quantification of Explanation Fairness

Given explanation quality (EQ), how to quantify explanation fairness?

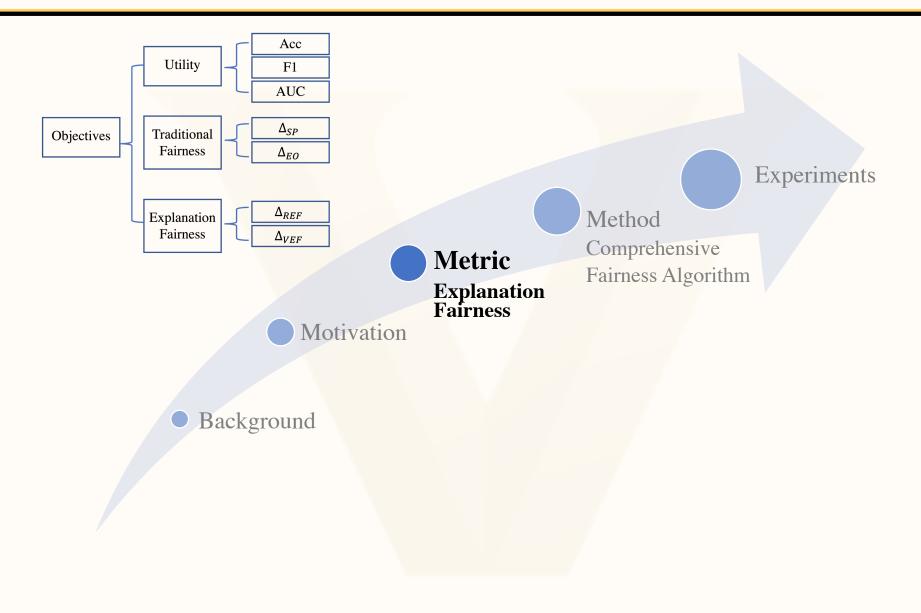
(1) Ratio-based Fairness Δ_{REF}

$$\Delta_{SP} = |P(\hat{y} = 1 | s = 0) - P(\hat{y} = 1 | s = 1)|$$

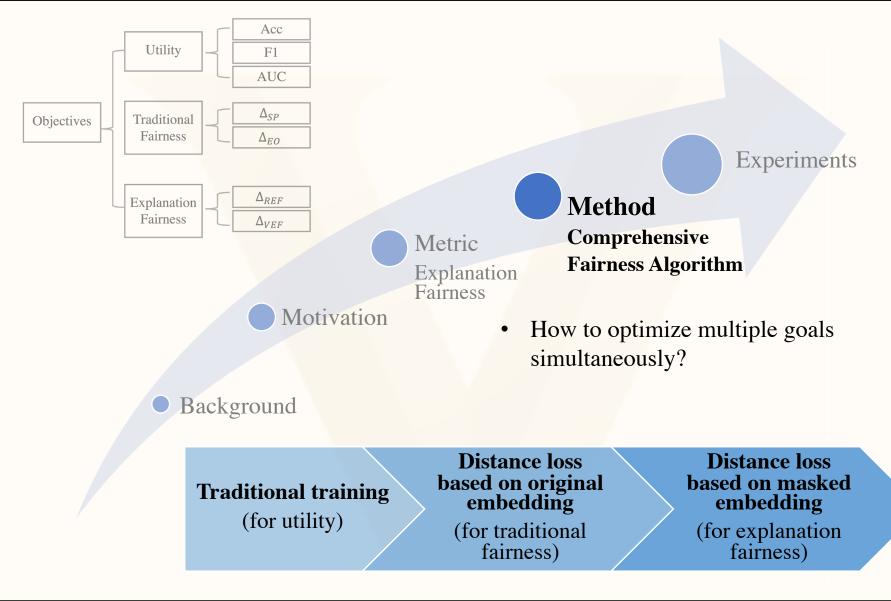
Same opportunity of having positive prediction

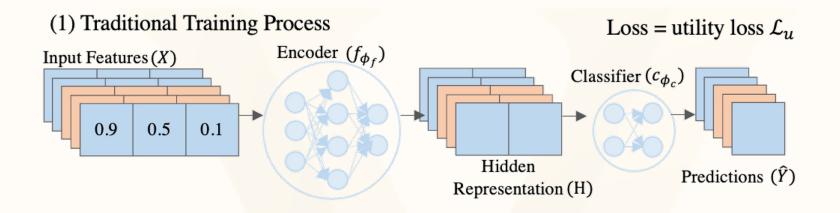

$$\Delta_{\text{REF}} = |P(\hat{q} = 1 | s = 0) - P(\hat{q} = 1 | s = 1)|$$

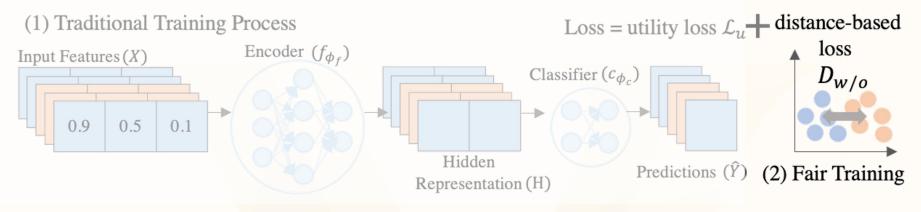
Same opportunity of having high-quality explanations


ŷ: prediction q: explanation quality

(2) Value-based Fairness Δ_{VEF}


$$\Delta_{\text{VEF}} = \left| \frac{1}{|\mathcal{G}_0^K|} \sum_{i \in \mathcal{G}_0^K} \text{EQ}_i - \frac{1}{|\mathcal{G}_1^K|} \sum_{i \in \mathcal{G}_1^K} \text{EQ}_i \right|$$

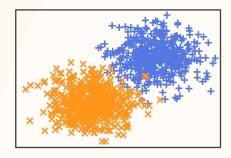


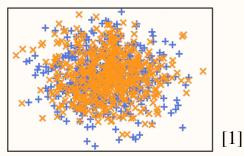

Utility loss: entropy loss (for binary classification)

$$\mathcal{L}_{u} = -\sum_{i=1}^{|\mathbf{Y}|} (y_{i}log(p) + (1 - y_{i})log(1 - p))$$

CFA: Traditional Fairness Optimization

Subgroup G_0 Subgroup G_1

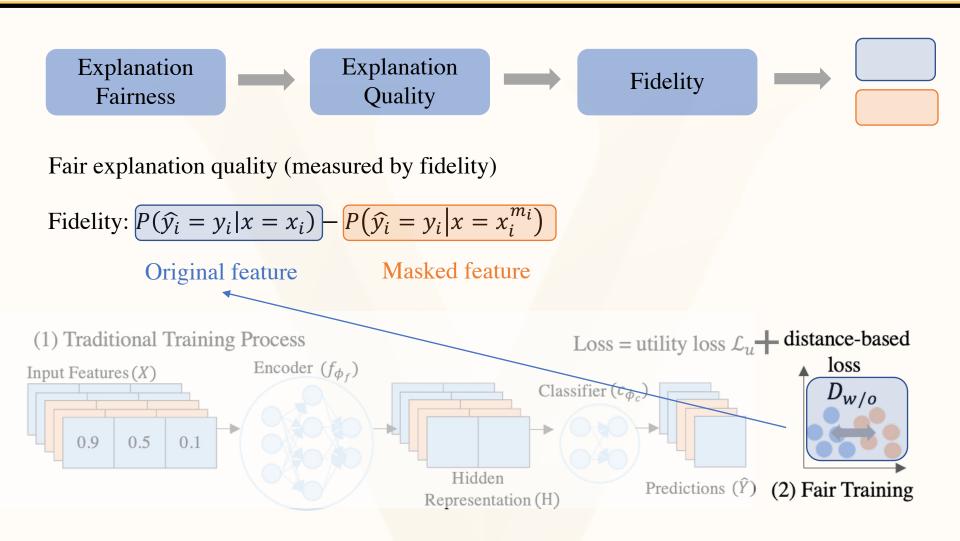

 $D_{w/o} = \mathcal{D}(\mathbf{H}_{\mathcal{G}_0}, \mathbf{H}_{\mathcal{G}_1})$


w/o: without masking based on the original feature

 $\Delta_{SP} = |P(\hat{y} = 1|s = 0) - P(\hat{y} = 1|s = 1) |$ $\Delta_{EO} = |P(\hat{y} = 1|y = 1, s = 0) - P(\hat{y} = 1|y = 1, s = 1) |$

The predictions should be irrelevant to sensitive features

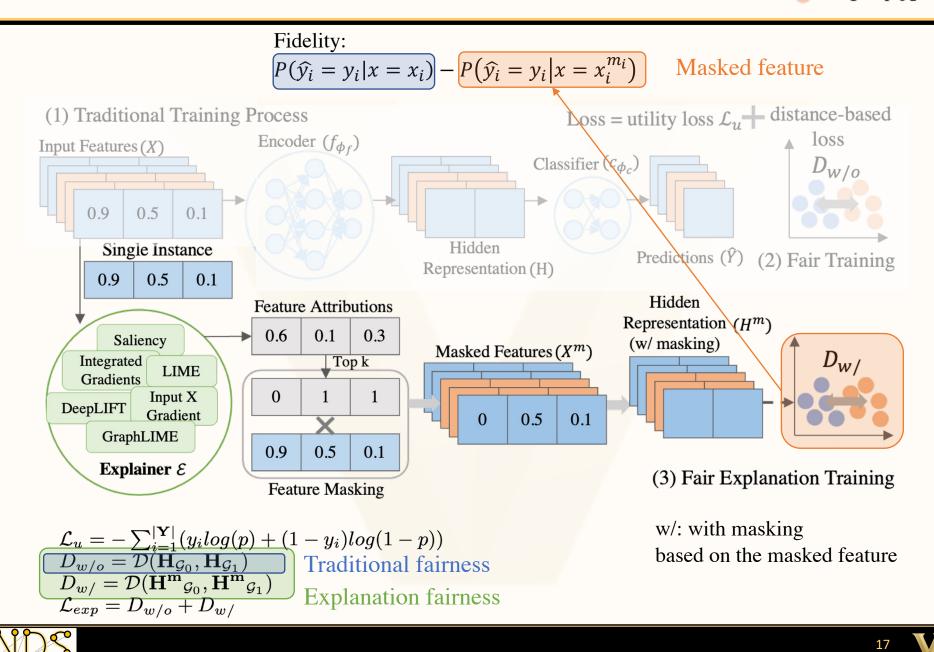
Requirements to the hidden representation(1) Encode sufficient information for prediction(2) Hide information related to sensitive features

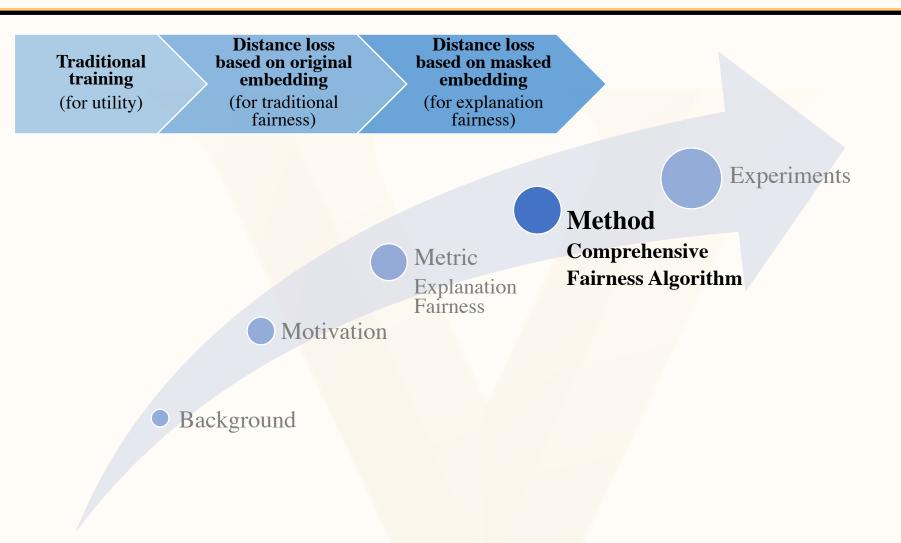


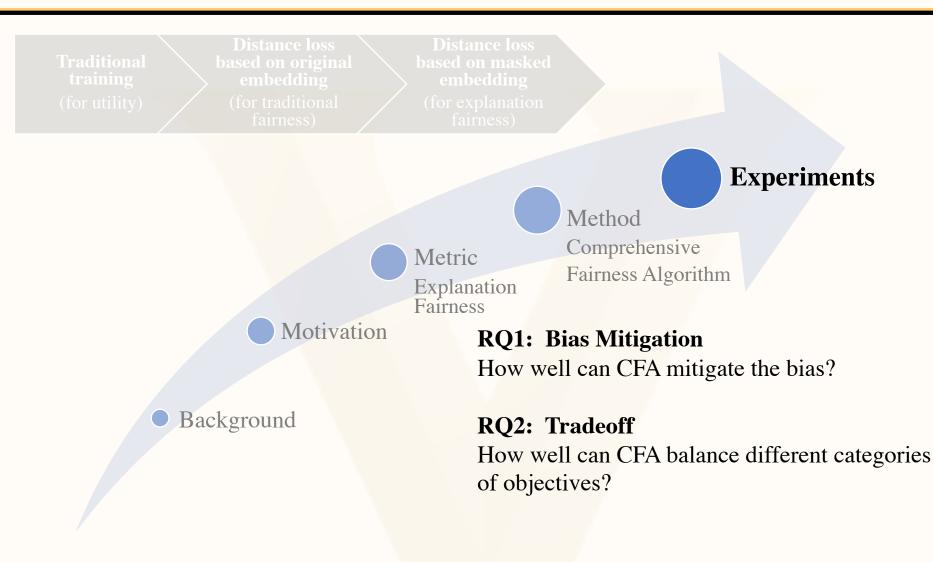
[1] Dong, Yushun, et al. "Edits: Modeling and mitigating data bias for graph neural networks." WWW. 2022

NDS

CFA: Explanation Fairness Optimization


Subgroup G_0 Subgroup G_1




CFA: Explanation Fairness Optimization

Subgroup G_0 Subgroup G_1

Experimental Setting

Dataset	Dataset	German	Recidivism	Math	Por
	# Nodes	1,000	18,876	649	649
	# Features	27	18	33	33
	Sens.	Gender	Race	Gender	Gender
	Label	Credit Risk	Recidivism	Grade	Grade

Evaluation metrics

- Utility(1): accuracy, F1, AUC
- Traditional fairness (result-oriented, \downarrow): Δ_{SP} and Δ_{EO}
- Explanation fairness (procedure-oriented, \downarrow): Δ_{VEF} and Δ_{REF}
- Overall score: $\frac{AUC+F1+ACC}{3} \frac{\Delta_{SP}+\Delta_{EO}}{2} \frac{\Delta_{VEF}+\Delta_{REF}}{2}$ (model selection)

Baselines

- (1) Reweight^[1]: [reweighing-based] reweight the training loss
- (2) Reduction^[2]: [constraint-based] optimization under fairness constraints

$$\Delta_{SP} = |P(\hat{y} = 1 | s = 0) - P(\hat{y} = 1 | s = 1)| \qquad \Delta_{REF} = |P(\hat{q} = 1 | s = 0) - P(\hat{q} = 1 | s = 1)|$$

$$\Delta_{EO} = |P(\hat{y} = 1 | y = 1, s = 0) - P(\hat{y} = 1 | y = 1, s = 1)| \qquad \Delta_{VEF} = \left|\frac{1}{|\mathcal{G}_0^K|} \sum_{i \in \mathcal{G}_0^K} EQ_i - \frac{1}{|\mathcal{G}_1^K|} \sum_{i \in \mathcal{G}_1^K} EQ_i\right|$$

[1] Jiang, Heinrich, et al. "Identifying and correcting label bias in machine learning." AISTATS, 2020.[2] Agarwal, Alekh, et al. "A reductions approach to fair classification." ICML, 2018.

RQ1: Bias Mitigation

					\square	Takes
Dataset	Metric	MLP	Reduction	Reweight	CFA	of bold
ı	AUC↑	86.12 ± 1.91	81.17 ± 0.00	89.24 ± 0.00	89.02 ± 0.86	
	F1↑	76.54 ± 2.52	$\underline{76.69\pm0.00}$	72.99 ± 0.00	81.28 ± 1.35	
Recidivism	Acc↑	83.48 ± 1.53	$\underline{84.66\pm0.00}$	83.70 ± 0.00	87.17 ± 0.84	
idiv	$\Delta_{\mathrm{SP}}\downarrow$	6.07 ± 2.18	2.04 ± 0.00	4.27 ± 0.00	1.16 ± 0.49	
Rec	$\Delta_{ m EO}\downarrow$	$\underline{3.19\pm0.73}$	4.66 ± 0.00	3.37 ± 0.00	1.14 ± 0.39	
	$\Delta_{ ext{REF}}\downarrow$	4.45 ± 2.96	0.53 ± 0.00	$\underline{1.34\pm0.91}$	1.98 ± 1.23	
	$\Delta_{ ext{VEF}}\downarrow$	$\underline{2.1 \pm 1.38}$	2.06 ± 0.00	3.22 ± 0.00	2.70 ± 0.78	
	Score ↑	74.15 ± 2.03	$\underline{76.19\pm0.00}$	$\underline{75.88 \pm 0.00}$	82.33 ± 0.62	
	AUC↑	$\underline{90.86 \pm 0.35}$	67.64 ± 0.00	89.07 ± 0.00	91.30 ± 0.55	
	F1↑	$\underline{58.41 \pm 4.10}$	51.43 ± 0.00	51.43 ± 0.00	60.55 ± 4.73	
•	Acc↑	$\underline{89.57\pm0.78}$	$\underline{89.57 \pm 0.00}$	$\underline{89.57\pm0.00}$	89.82 ± 1.00	
Por	$\Delta_{\mathrm{SP}}\downarrow$	2.08 ± 0.75	$\underline{1.93 \pm 0.00}$	$\underline{1.93\pm0.00}$	1.00 ± 0.72	
	$\Delta_{ m EO}\downarrow$	32.35 ± 7.07	20.59 ± 0.00	20.59 ± 0.00	$\underline{27.65 \pm 5.44}$	
	$\Delta_{ ext{REF}}\downarrow$	8.68 ± 3.18	1.37 ± 0.00	8.68 ± 0.00	4.66 ± 3.76	
	$\Delta_{\mathrm{VEF}}\downarrow$	$\underline{4.44 \pm 2.22}$	0.00 ± 0.00	7.69 ± 0.00	4.70 ± 3.67	
	Score ↑	55.83 ± 3.97	57.60 ± 0.00	57.25 ± 0.00	61.55 ± 3.26	/

Takes up largest proportion of bold/underline

Bold text: best performance Underline text: second best performance

RQ1: Bias Mitigation

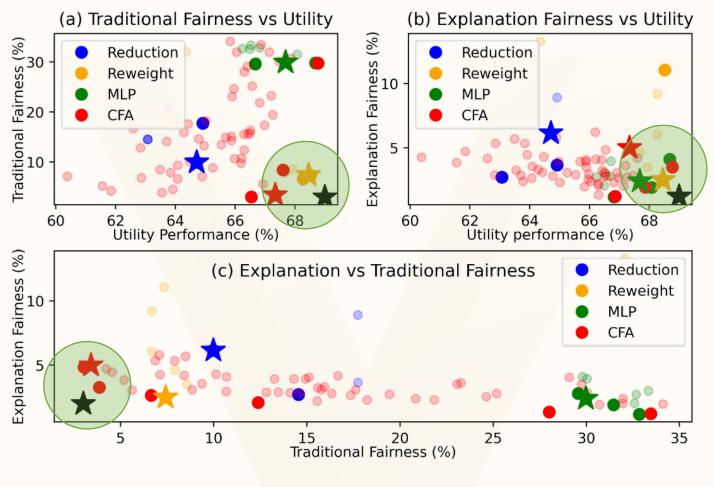
Dataset	Metric	MLP	Reduction	Reweight	CFA
Recidivism	AUC↑	86.12 ± 1.91	81.17 ± 0.00	89.24 ± 0.00	$\underline{89.02\pm0.86}$
	F1↑	76.54 ± 2.52	$\underline{76.69\pm0.00}$	72.99 ± 0.00	81.28 ± 1.35
	Acc↑	83.48 ± 1.53	$\underline{84.66\pm0.00}$	83.70 ± 0.00	87.17 ± 0.84
idi	$\Delta_{\rm SP}\downarrow$	6.07 ± 2.18	2.04 ± 0.00	4.27 ± 0.00	1.16 ± 0.49
Rec	$\Delta_{\mathrm{EO}}\downarrow$	3.19 ± 0.73	4.66 ± 0.00	3.37 ± 0.00	1.14 ± 0.39
	$\Delta_{ ext{REF}}\downarrow$	4.45 ± 2.96	0.53 ± 0.00	$\underline{1.34\pm0.91}$	1.98 ± 1.23
	$\Delta_{\mathrm{VEF}}\downarrow$	$\underline{2.1 \pm 1.38}$	2.06 ± 0.00	3.22 ± 0.00	2.70 ± 0.78
	Score ↑	74.15 ± 2.03	76.19 ± 0.00	75.88 ± 0.00	82.33 ± 0.62
	AUC↑	$\underline{90.86 \pm 0.35}$	67.64 ± 0.00	89.07 ± 0.00	91.30 ± 0.55
	F1↑	$\underline{58.41 \pm 4.10}$	51.43 ± 0.00	51.43 ± 0.00	60.55 ± 4.73
	Acc↑	89.57 ± 0.78	89.57 ± 0.00	89.57 ± 0.00	89.82 ± 1.00
Por	$\Delta_{\mathrm{SP}}\downarrow$	2.08 ± 0.75	$\underline{1.93\pm0.00}$	$\underline{1.93\pm0.00}$	1.00 ± 0.72
	$\Delta_{\mathrm{EO}}\downarrow$	32.35 ± 7.07	20.59 ± 0.00	20.59 ± 0.00	$\underline{27.65 \pm 5.44}$
	$\Delta_{\mathrm{REF}}\downarrow$	8.68 ± 3.18	1.37 ± 0.00	8.68 ± 0.00	4.66 ± 3.76
	$\Delta_{\mathrm{VEF}}\downarrow$	$\underline{4.44 \pm 2.22}$	0.00 ± 0.00	7.69 ± 0.00	4.70 ± 3.67
	Score ↑	55.83 ± 3.97	$\underline{57.60\pm0.00}$	57.25 ± 0.00	61.55 ± 3.26

Utility Performance
Traditional Fairness
Explanation Fairness
Comparable or better that

Comparable or better than baselines

RQ1: Bias Mitigation

Dataset	Metric	MLP	Reduction	Reweight	CFA
Recidivism	AUC↑	86.12 ± 1.91	81.17 ± 0.00	89.24 ± 0.00	89.02 ± 0.86
	F1↑	76.54 ± 2.52	$\underline{76.69\pm0.00}$	72.99 ± 0.00	81.28 ± 1.35
	Acc↑	83.48 ± 1.53	$\underline{84.66\pm0.00}$	83.70 ± 0.00	$\textbf{87.17} \pm \textbf{0.84}$
idiv	$\Delta_{\mathrm{SP}}\downarrow$	6.07 ± 2.18	2.04 ± 0.00	4.27 ± 0.00	1.16 ± 0.49
Rec	$\Delta_{\mathrm{EO}}\downarrow$	$\underline{3.19 \pm 0.73}$	4.66 ± 0.00	3.37 ± 0.00	1.14 ± 0.39
	$\Delta_{ ext{REF}}\downarrow$	4.45 ± 2.96	0.53 ± 0.00	$\underline{1.34\pm0.91}$	1.98 ± 1.23
	$\Delta_{\mathrm{VEF}}\downarrow$	$\underline{2.1 \pm 1.38}$	2.06 ± 0.00	3.22 ± 0.00	2.70 ± 0.78
	Score ↑	74.15 ± 2.03	$\underline{76.19\pm0.00}$	$\underline{75.88\pm0.00}$	82.33 ± 0.62
	AUC↑	$\underline{90.86 \pm 0.35}$	67.64 ± 0.00	89.07 ± 0.00	91.30 ± 0.55
	F1↑	$\underline{58.41 \pm 4.10}$	51.43 ± 0.00	51.43 ± 0.00	60.55 ± 4.73
Por	Acc↑	$\underline{89.57\pm0.78}$	$\underline{89.57 \pm 0.00}$	89.57 ± 0.00	89.82 ± 1.00
	$\Delta_{\mathrm{SP}}\downarrow$	2.08 ± 0.75	1.93 ± 0.00	$\underline{1.93\pm0.00}$	1.00 ± 0.72
	$\Delta_{\mathrm{EO}}\downarrow$	32.35 ± 7.07	20.59 ± 0.00	20.59 ± 0.00	$\underline{27.65 \pm 5.44}$
	$\Delta_{ ext{REF}}\downarrow$	8.68 ± 3.18	1.37 ± 0.00	8.68 ± 0.00	4.66 ± 3.76
	$\Delta_{\mathrm{VEF}}\downarrow$	$\underline{4.44 \pm 2.22}$	0.00 ± 0.00	7.69 ± 0.00	4.70 ± 3.67
	Score ↑	55.83 ± 3.97	$\underline{57.60\pm0.00}$	57.25 ± 0.00	61.55 ± 3.26


Overall Score

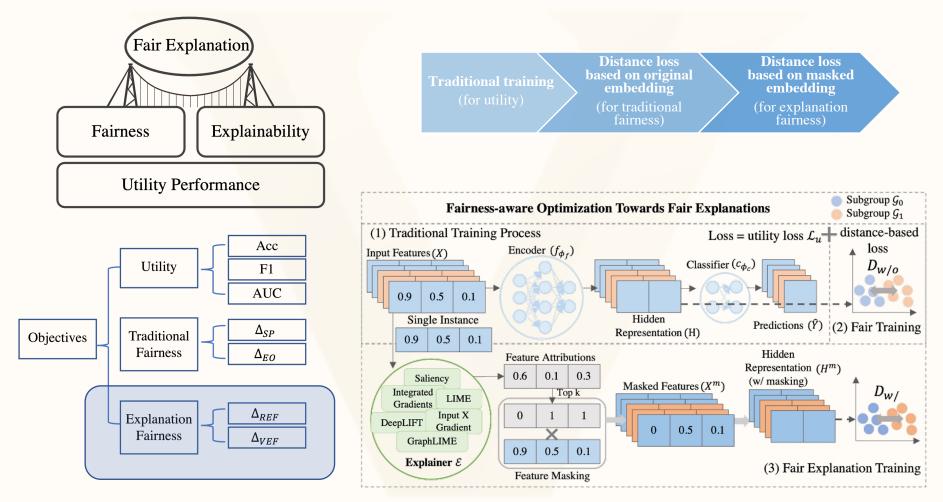
The highest for all datasets

Overall score: $\frac{AUC+F1+ACC}{3} - \frac{\Delta_{SP}+\Delta_{EO}}{2} - \frac{\Delta_{VEF}+\Delta_{REF}}{2}$ (model selection)

RQ2: Tradeoff

Circle: result of one hyper-parameter (Pareto frontier)

Star: best hyper-parameter setting based on overall score


 \star Black star: the ideal direction of optimal solution

Summary

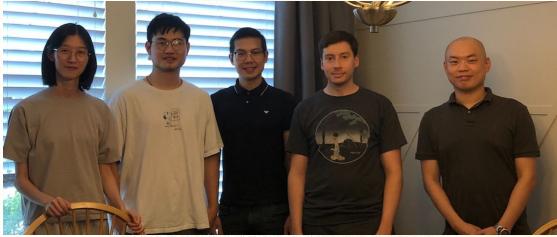
Novel Fairness Perspective

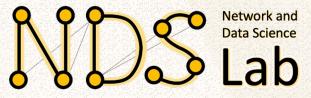
Comprehensive Fairness Algorithm

Future Directions

Extending CFA towards fair model explanations in other data types (e.g., images)

Defining novel fair explanation metrics for inherently explainable models (e.g., decision trees)


Improved Fairness and Explainability of GNNs https://yuyingzhao.github.io/



Please see my website for other work

Acknowledgement

AAAI-23 Student Scholar, Diversity and Inclusion Scholar, & Volunteer Program

